био макро микроэлементы и их роль в жизни растения
Био-,макро-,микро- элементы и их роль в жизни растений
Автор работы: Пользователь скрыл имя, 15 Октября 2014 в 09:47, реферат
Краткое описание
Цель работы.
Цель работы заключается в изучении био-, макро-, микроэлементов в растениях, их роль в жизнедеятельности. Описать некоторые элементы.
Задачи работы:
1) изучение литературы на тему «Био-, макро-, микроэлементы и их роль в жизни растения».
2) обработка полученных данных, отсеивание ненужной информации, сокращение.
3) Формирование логического текста.
Содержание
Введение. Стр. 2
Основной текст. Стр. 3
Биоэлементы. Стр. 3
Макроэлементы. Стр. 4
Микроэлементы. Стр. 6
Роль элементов в жизни растения. Стр. 10
Заключение. Стр. 11
Информационный ресурс.
Прикрепленные файлы: 1 файл
Био-,макро-,микро-элементы и их роль в жизни растений.docx
Государственное бюджетное образовательное учреждение
среднего профессионального образования
Колледж Сферы Услуг №3
Реферат на тему:
”Био-,макро-,микро- элементы и их роль в жизни растений”
Подготовил Голубев Кирилл
Первый курс,102 группа
Основной текст. Стр. 3
Макроэлементы. Стр. 4
Микроэлементы. Стр. 6
Роль элементов в жизни растения. Стр. 10
Информационный ресурс. Стр. 12
Цель работы заключается в изучении био-, макро-, микроэлементов в растениях, их роль в жизнедеятельности. Описать некоторые элементы.
1) изучение литературы на тему «Био-, макро-, микроэлементы и их роль в жизни растения».
2) обработка полученных данных, отсеивание ненужной информации, сокращение.
3) Формирование логического текста.
В зависимости от количественного содержания они делятся на макроэлементы, содержащиеся в десятых и сотых долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.
Fe, Zn, Cu, Mn, Mo, Co, Cr, Se, I
Al, Pb, Ba, Bi, Cd, Hg, Ti, Be, Sb
Макроэлементы — химические элементы, усвояемые растениями в больших количествах, от n. 10 до n. 10-2 вес. %. Главными макроэлементами являются N, Р, К, Са, Mg, Si, Fe, S.
Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является одним из главнейших элементов корневого ‘питания, так как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен.
Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в виде окисленных соединений, главным образом остатков ортофосфорной кислоты (Н2РO4-, HPO42-, РO43-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и многих других, играющих центральную роль в обмене веществ.
Сера содержится в растениях в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона SO42-. Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки включают аминокислоты, содержащие серу, поэтому становится понятна роль серы в белковом обмене организма. Сера, поступая в растение в виде иона SO42-, быстро переходит в органическую форму при участии АТФ и магния:
Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит до 1 %. Поступает в виде иона Са22+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са22+ непосредственно соприкасались с клетками корня.
Магний. Содержание магния в растениях составляет в среднем 0,17%. Магний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок.
Калий. Содержание калия в растении в среднем составляет 0,9%. Он поступает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, остальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повышает ее оводненность, увеличивая гидратацию белков
Железо входит в состав растения в количестве 0,08%. Необходимость железа была показана в тот же период, что и остальных макроэлементов. Поэтому, несмотря на ничтожное содержание, его роль рассматривается вместе с макроэлементами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов.
Практическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.
Марганец поступает в растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001 %. В растении марганец находится в разной степени окисления (Мn2+, Мn3+, Мn4+). Марганец характеризуется высоким показателем окислительно-восстано вительного потенциала. С этим связано значение этого элемента в реакциях биологического окисления. Он необходим для нормального протекания фотосинтеза, поскольку входит в состав активного центра кислородовыделяющего комплекса фотосистемы II и осуществляет разложение воды и выделение кислорода: 2Мn4+ 2Н2O = 2Мn2+ 4Н+ O2.
Медь входит непосредственно в состав ряда ферментных систем, относящихся к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена с белком, по-видимому, через SH- группы. Полифенолоксидаза и аскорбатоксидаза осуществляют окисление фенолов и аскорбиновой кислоты, а цитохромоксидаза входит в состав дыхательной цепи митохондрий. Большая часть меди (75% от всего содержания меди в листьях) концентрируется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок синего цвета — пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению: Сu2+ + Сu+.
Цинк поступает в растение в виде ионов Zn2+. Среднее содержание цинка в растениях 0,002%. В растениях цинк не участвует в окислительно-восстановительных реакциях, поскольку не меняет степень окисления. Он входит в состав более 30 ферментов, в т. ч. фосфатазы, карбоангидразы, алкогольдегидрогеназа, РНК-полимераза и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СO3: СO2 + Н2O Н2СO3 + Н2.
Молибден поступает в растения в виде аниона МoO42-. Содержание молибдена в растениях составляет 0,0005—0,002%. Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию. Молибден вместе с железом входит в состав активного центра ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорганизмами. При восcтановлении нитратов молибден действует как переносчик электронов от ФАД (флавинадениндинуклеотид) к нитрату, при этом NO3- переходит в NO2-, а Мo5+ — в Мo6+. Образование нитратредуктазы является одним из немногих примеров адаптивного синтеза ферментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден.
Бор поступает в растение в виде аниона борной кислоты — ВO33-. Среднее содержание бора в растениях 0,0001%. Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.
Кобальт находится в тканях растений в ионной (Со2+, Со3+) и комплексной форме. Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий.
Хлор поступает в растение в виде Сl-. Хлор необходим для работы ФС II на этапе фотосинтетического разложения воды и выделения кислорода. Показано влияние хлоридов на работу Н+-АТФаз тонопласта, участие в делении клетки. Имеются сведения о влиянии хлора на азотный обмен. Так, хлориды стимулируют активность аспарагинсинтетазы, которая участвует в переносе аминогруппы на аспарагин. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.
Никель поступает в растения в виде иона Ni2+, но может также находиться в виде Ni+ и Ni3+, Роль никеля для высших растений как микроэлемента была доказана недавно. До этого считали никель необходимым микроэлементом многих бактерий. У высших растений никель входит в состав фермента уреазы, который осуществляет реакцию разложения мочевины. Показано, что в растениях, обеспеченных никелем, активность уреазы выше и соответственно ниже содержание мочевины по сравнению с необеспеченными. Никель активирует ряд ферментов, в т. ч. нитратредуктазу и другие, оказывает стабилизирующее влияние на структуру рибосом
Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.
Значение макро и микроэлементов в жизни растения
Катионы. Калий, кальций и магний усваиваются из любых растворимых солей, анионы которых не обладают токсическим действием. Доступными они являются и находясь в «поглощенном состоянии» т. е. связанные с каким-нибудь нерастворимым веществом, обладающим ясно отраженными кислотными свойствами. Попав в растения, калий и кальций в своей массе не претерпевают никаких химических превращений, но они необходимы для питания. Их нельзя заменить другими элементами, как нельзя ничем заменить азот, фосфор и серу.
Статья на тему «Роль микро-и макроэлементов в жизни растений»
Местонахождение в растении
Что является источником данного элемента
Какие недостатки вызывает отсутствие
элемента у растений
Входит в состав ДНК, РНК
Поступает из почвы в виде соли ортофосфорной кислоты
-листья становятся синевато-зелеными, свидетельство задержки синтеза белка и накопление сахаров
Является составной частью аминокислот: метионина, цистеина, входит в состав белков.
Поступает из почвы в виде сульфатной серы
В клеточном соке в виде катионов,
адсорбируется на поверхности коллоидных частиц протоплазмы
Влияет на гидрофильность коллоидов протоплазмы
Усиливает передвижение углеводов из листьев в другие органы растений
Природные растворимые соли
Прекращается рост растения, так как обмен белков и углеводов не идет нормально
В клеточном соке, адсорбируется на поверхности коллоидных частиц протоплазмы
Входит в состав пектиновых веществ, нейтрализует избыток органических кислот в клетке Кальций входит в состав ядерного вещества
кальций сосредоточен в плазме — здесь кальций играет роль антагониста калия, он оказывает на коллоиды плазмы действие, противоположное калию, а именно — понижает гидрофильность плазменных коллоидов
Природные растворимые соли
Велика роль кальция и в образовании клеточных оболочек, особенно в формировании стенок корневых волосков, куда он входит в виде пектата. При отсутствии кальция очень быстро поражаются точки роста надземных частей и корня, так как кальций не передвигается из старых частей растения к молодым. Корни ослизняются, рост их почти прекращается или идет ненормально.
Входит в состав хлорофилла
Природные растворимые соли
— Дефицит проявляется на выщелоченных гумусных и песчаных известковых почвах, особенно на богатых калием.
— Оптимальное усвоение растением на нейтральных почвах.
— Междужилковое пожелтение старых листьев, их отмирание и опадание в случае сильного дефицита Mg.
— Хлорозные пятна вдоль листовой пластинки у злаков.
С одержится в тканях расте ний, в хлоропластах
участвует в фотосинтезе и метаболизме N и S.
— Необходимый компонент многих ферментов в растении.
— Вовлечен в синтез хлорофилла.
— Количество Fe, которое может усвоить растение, всегда ниже общего содержания Fe в почве.
— Минимальное количество Fe усваивается на нейтральных и щелочных почвах.
— Дефицит проявляется на известковых почвах («известковый хлороз») или на почвах с высоким содержанием тяжелых металлов.
— Переизбыток Mn приводит к дефициту Fe.
— Может стимулировать хлороз, который проявляется на молодых листьях из-за малоподвижности Fe в растении.
— У злаков хлороз проявляется в виде перемежающихся желтых и зеленых полос вдоль листа.
— Дефицит Fe часто вызывает отмирание побегов.
О н входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, углеводном и белковом обмене
— Участвует в высвобождении энергии из молекул, ее переносящих; распаде гормонов растений; совместно с Fe в транспорте энергии, необходимой для фотосинтеза; в процессе усвоения N, который замедляется при дефиците Mn.
— Усваивается растением в меньшей степени на насыщенных влагой почвах.
— Усвоение Mn возрастает при повышении рН.
— Особенно высокий уровень рН снижает усвоение марганца.
— У видов с широкими листьями желтые некротические пятна между жилками листа, в первую очередь проявляющиеся на молодых листьях.
— Серовато-зеленые точки и полосы на базальной стороне листьев (трава, зерновые).
— Дефицит приводит к снижению урожайности и низкому качеству урожая
— В основном в составе белков в зеленых клетках отвечает за связывание солнечной энергии;
— Наряду с Zn, активирует фермент, предотвращающий разрушение клеток растений;
— Участвует в процессе метаболизма белков и углеводов в растении.
— Усваивается растением из органических соединений почвы.
— Усвоение уменьшается при повышении рН из-за абсорбции частичками почвы.
— Симптомы дефицита часто проявляются на известковых и выщелоченных песчаных почвах, на почвах с высоким содержанием органических веществ или глины.
Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание углеводов и белковых веществ.
— Катализатор во многих ферментных системах.
— В составе ферментов участвует в метаболизме крахмала и азота.
— Контролирует синтез аминокислоты триптофана (предшественника ауксина, регулятора роста)
— Во многих случаях большая часть растворимого Zn находится в виде органических соединений.
— Повышение рН снижает усвоение цинка.
— Симптомы дефицита проявляются в низинах, а также могут развиваться на почвах с переизбытком фосфора.
Установлено, что молибден входит в состав фермента нитратрадуктазы, осуществляющей восстановление нитратов в растениях
— Необходим растению для утилизации азота и его фиксации у бобовых.
— Дефицит проявляется на кислых песчаных, высокоподзолистых или свободно дренированных известковых почвах;
— Легче усваивается растением при повышении рН и содержании извести
Кобальт принимает активное участие в реакциях окисления и восстановления, стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергетический обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положительному влиянию на обмен веществ, синтез белков, усвоение углеводов и т.п. он является могучим стимулятором роста.
-Уровень Со низкий на сильно щелочных, кислых вулканических, известковых и торфяных почвах
— Плохой рост растений
Бор играет важную роль в делении клеток и синтезе белков и является необходимым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор в углеводном обмене.
Важный компонент синтеза РНК и ДНК.
— Бор способствует и лучшему использованию кальция в процессах обмена веществ в растениях.
Дефицит В ослабляет деятельность гормонов и замедляет транспорт сахара в растении
-Неправильное развитие апексных точек роста.
— Замедленное развитие пыльцы уменьшает завязь, неправильно развивается плод.
— Растрескивание стеблей с внутренним некрозом делает растения восприимчивыми заболеваниям
— при недостатке бора растения не могут нормально использо-вать кальций, хотя последний находится в почве в достаточном количестве. Установлено, что размеры поглощения и накопления бора растениями возрастают при повышении калия в почве.
П.А. Генкель Физиология растений издательство «Просвещение» Москва 1994
А.В. Петербургский Основы агрохимии издательство «Просвещение» Москва 1979
Био макро микроэлементы и их роль в жизни растения
Автор работы: Пользователь скрыл имя, 12 Ноября 2013 в 16:36, доклад
Краткое описание
Прикрепленные файлы: 1 файл
Биология №1.docx
Департамент образования г. Москвы
колледж сферы услуг №32
Самостоятельная работа по Биологии №1
Тема: «Био макро микроэлементы и их роль в жизни растения»
студент группы ТОБ 1-1
Ким Дмитрий Александрович
В зависимости от количественного содержания они делятся на макроэлементы, содержащиеся в десятых и сотых долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.
Fe, Zn, Cu, Mn, Mo, Co, Cr, Se, I
Al, Pb, Ba, Bi, Cd, Hg, Ti, Be, Sb
Макроэлементы — химические элементы, усвояемые растениями в больших количествах, от n. 10 до n. 10-2 вес. %. Главными макроэлементами являются N, Р, К, Са, Mg, Si, Fe, S.
Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является одним из главнейших элементов корневого ‘питания, так как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен.
Практическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.
Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.
Значение макро и микроэлементов в жизни растения
Катионы. Калий, кальций и магний усваиваются из любых растворимых солей, анионы которых не обладают токсическим действием. Доступными они являются и находясь в «поглощенном состоянии» т. е. связанные с каким-нибудь нерастворимым веществом, обладающим ясно отраженными кислотными свойствами. Попав в растения, калий и кальций в своей массе не претерпевают никаких химических превращений, но они необходимы для питания. Их нельзя заменить другими элементами, как нельзя ничем заменить азот, фосфор и серу.
Основная физиологическая роль калия, кальция и магния, вернее их ионов, состоит в том, что, адсорбируясь на поверхности коллоидных частиц протоплазмы, они создают вокруг них определенные электростатические силы. Эти силы играют немаловажную роль в создании структуры живого вещества, без которой не могут происходить ни согласованная деятельность ферментов, ни синтез клеточных веществ. Ионы удерживают вокруг себя различное количество молекул воды, в результате чего объем иона является неодинаковым. Неодинаковы и силы, удерживающие ион на поверхности коллоидной частицы. Ион кальция имеет наименьший объем — он с большей силой удерживается на поверхности коллоидов. Ион калия имеет наибольший объем, в силу чего образует менее стойкие адсорбционные связи и может быть вытеснен ионом кальция. Ион магния занимает промежуточное положение.
Макро-, мезо- и микроэлементы: особенности питания растений
По оценкам разных исследователей, для питания растений необходимо от 68 до 84 элементов периодической системы Д. И. Менделеева. Роль далеко не всех их изучена досконально. Тем не менее, общепризнано, что определенная часть найденных в растениях и почве элементов является совершенно необходимой для нормального роста и развития растений, получения хороших урожаев
Все элементы, участвующие в минеральном питании растений, принято классифицировать в зависимости от их содержания в растениях и в почве. Обычно их разделяют на макроэлементы и микроэлементы. По этой классификации, элементы, содержание которых в перерасчете на сухое вещество составляет от сотых долей процента до нескольких десятков процентов, являются макроэлементами. Те элементы, содержание которых не превышает тысячных долей процента, относят к микроэлементам.
В настоящее время эта классификация дополнена. Часть элементов сейчас относят к мезо- элементам, т.е., по сути, они образуют группу, промежуточную между макро- и микроэлементами. Кроме того, иногда выделяют ультрамикроэлементы. Это те элементы, содержание которых в растениях ничтожно мало, а физиологическая роль и влияние практически не изучены.
Если придерживаться уточненной классификации, то к макроэлементам относятся азот, фосфор и калий, к мезоэлементам – сера, кальций, магний, к микроэлементам – бор, молибден, цинк, медь, кобальт, марганец, барий, кремний, хлор, натрий, титан, серебро, ванадий, железо, никель, селен, литий, йод, алюминий.
Приведенная классификация, как и любая другая, достаточно условна, и те или иные элементы порой попадают в разные группы. Кроме того, в тканях некоторых видов растений отдельные микроэлементы содержатся в количествах, характерных для макроэлементов. Тем не менее, для практических целей, т.е. организации минерального питания растений в условиях сельхозпроизводства, эта классификация достаточно удобна и позволяет адекватно оценить роль тех или других элементов в получении урожая, правильно подобрать методы восполнения их недостатка в почве.
Макроэлементы и мезоэлементы необходимы растению в достаточно больших количествах, потому что являются «строительным материалом», в первую очередь, для белков. Микроэлементы входят в состав ферментов, витаминов и т.п. Нормальное развитие и функционирование как отдельных клеток, так и всего растительного организма невозможно без оптимального обеспечения элементами всех этих групп.
Отсутствие или недостаток любого из элементов, необходимых для роста и размножения, вызывает вполне определенные симптомы голодания. Однако, излишество в данном случае тоже вредно: поступая в повышенных дозах, как макро, так и микроэлементы становятся токсичными для растений и употребляющих их людей и животных.
Факторы, влияющие на доступность элементов питания у растений
Наличие достаточного количества питательных веществ в почве не дает гарантии их попадания в растения. Усваиваемость элементов питания культурами зависит от многих факторов, как внутренних, так и внешних. Прежде всего, каждое растение испытывает потребность в определенном наборе химических соединений, который связан с типом культуры, ее фазой развития и индивидуальными особенностями.
Питательные вещества при корневом питании растения получают из почвы. При этом почвы очень различаются по содержанию микроэлементов. Так, в моренных лессовидных суглинках содержание кобальта, хрома, стронция в 2 – 2,5 раза больше, а никеля, ванадия, титана, бария, бора, марганца – в 3 – 4 раза больше, чем в песках. Торфяно-болотные почвы бедны микроэлементами. При этом, содержание микроэлементов в почве увеличивается по мере накопления в ней органических веществ. То есть, при внесении навоза, компоста и других органических удобрений, почва обогащается не только макро-, но и микроэлементами.
Растворимость микроэлементов в почвах имеет большое значение для их биологической доступности и способности к перемещению. Тяжелые почвы (как щелочные, так и нейтральные) хорошо удерживают микроэлементы и поэтому медленно поставляют их растениям, что может приводить к нехватке некоторых элементов. Легкие почвы, наоборот, могут быть источником легкодоступных микроэлементов, но при этом их запас быстрее истощается. Поэтому при оценке обеспеченности почв микроэлементами важно учитывать не только их валовое содержание, но и наличие подвижных форм. Причем, разница между этими двумя значениями может быть весьма существенной. Например, бор в подвижной форме составляет лишь 2 – 4% от валового содержания этого микроэлемента, медь, молибден, кобальт, цинк – 10 – 15%.
Обеспеченность почвы микроэлементами меняется в течение вегетационного периода, а также зависит от интенсивности осадков, испарения влаги из почвы и т.д. В зависимости от этих факторов, концентрации микро- элементов в почвенных растворах могут изменяться более чем в 10 раз. Это необходимо учитывать при проведении анализов почвы. При этом концентрации макроэлементов, хотя так же зависят от упомянутых факторов, изменяются в меньшей степени.
Перенос растворенных элементов в почве может происходить двумя путями: через почвенный раствор (диффузия) и вместе с движущимся почвенным раствором (вымывание). В зависимости от климатических условий, этот процесс имеет свои особенности. Так, в прохладном влажном климате вымывание микроэлементов вниз по профилю почвы проявляется сильнее, чем их накопление. А в теплом сухом климате более характерно восходящее движение микроэлементов.
В течение вегетационного периода растения потребность и степень усваиваемости одного и того же элемента может сильно отличаться. Поскольку все растительные организмы обладают избирательной способностью, то поглощение веществ, необходимых на данном этапе их развития, происходит более активно, чем всех остальных.
Урожайность и качество растительной продукции обеспечиваются необходимым уровнем, соотношением и доступностью элементов питания. И если кислород, водород и углерод растения могут в достаточном количестве получать из атмосферного воздуха (в виде СО2 и Н2О), то остальные необходимые элементы питания поступают в их организм почти полностью из почвы. Главным условием хорошей поглощаемости растениями микроэлементов является их доступность. Если элементы питания находятся в почвенном растворе, они легче усваиваются растениями. Наиболее важными для питания культур являются находящиеся в почвенном растворе ионы Са2+, К+, Mg2+, NH4+, NO3- и H2PO4-.
В процессе их поглощения корневой системой растений необходимо постоянное пополнение этих элементов путем внесения органических и минеральных удобрений.
Растения способны питаться не только ионами микро- и макроэлементов, которые находятся в почвенном растворе, но и теми ионами, которые связаны в коллоидах. С помощью корневых выделений (угольная кислота, органические и аминокислоты), обладающих растворяющей способностью, растения способны воздействовать на твердую фазу почвы, превращая необходимые им элементы из малодоступных соединений в легкоусваиваемую форму.
На уровень усваиваемости удобрений растениями большое влияние оказывают параметры окружающей среды: температура и влажность почвы, воздуха, освещенность, кислотнощелочная реакция грунта, его механический и химический состав и пр. Замечено, что низкие температуры (+10. 11°С) замедляют усваиваемость фосфора и тормозят поглощение основных элементов питания корневой системой растений. При +5. 6°С прекращается поступление всех питательных веществ, в т. ч. и азота, в растения. Наиболее оптимальный температурный диапазон, при котором происходит максимальная усваиваемость микро- и макроэлементов у большинства растительных организмов, находится в пределах от +15°С до +30°С.
Освещение, необходимое для процессов фотосинтеза, так же необходимо и для поглощения растениями элементов питания. Чем меньше света, тем ниже уровень усвоения полезных веществ. Поступление некоторых элементов, например, калия, напрямую зависит от яркости освещения, поэтому культуры, растущие в тени, часто страдают от его недостатка. Продолжительность воздействия и интенсивность солнечных лучей влияют на поступление в растения кальция, фосфора, магния, молибдена, серы, аммиака и других элементов. От освещенности зависит и оптимальная влажность воздуха для растений: чем больше освещенность, тем выше должна быть относительная влажность воздуха.
Достаточная влажность почвы положительно влияет на развитие корневой системы растений и улучшает ее поглотительную способность. Если в зонах с достаточным уровнем увлажнения усвоение растениями фосфора из минеральных удобрений составляет 10 – 20%, а калия и азота – 40 – 70%, то в условиях засушливого климата этот показатель уменьшается в 1,5 – 2 раза. Повышение содержания влаги в грунте (до определенного предела) увеличивает доступность элементов питания в связи с их растворяемостью в воде.
Оптимальный (средний) уровень влажности для каждого типа почв не одинаков. Для суглинистого чернозема он составляет около 55 – 61%, для песчаного чернозема этот показатель находится в пределах 35 – 40%, а для подзолистых почв – от 41% до 61%. Но при этом необходимо учитывать также различие химического и физико-механического составов различных слоев почв, в которых находятся вещества, необходимые для питания растений.
На усваиваемость микро- и макроэлементов растениями негативно влияют как засуха, так и переувлажнение грунта.
Не меньшее влияние на доступность питательных элементов для растений оказывает и кислотно-щелочная среда почвы. Для каждого из элементов минерального питания есть определенное значение рН почвы, при котором он будет максимально доступен для растения. Так, некоторые виды фосфорсодержащих удобрений (фосфоритная мука) становятся доступными лишь после растворения в кислой среде. Как правило, более доступны и лучше усваиваются элементы в слабокислой или близкой к нейтральной почвенной среде (6,2
Опубликовано в журнале
Ресурсосберегающее земледелие 2(38)/2018
Вода в сельском хозяйстве: войны за ресурсы. Ценность растительных остатков. Органическое земледелие: перспективы и реальность. Враг атакует: озимая совка. Макро-, мезо- и микроэлементы: особенности питания растений.
.jpg)
.jpg)
