биогеоценозный уровень организации жизни
Химия, Биология, подготовка к ГИА и ЕГЭ
Уровни организации живой природы
Выделяют 8 уровней.
Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.
Каждый следующий уровень обязательно содержит в себе все предыдущие.
Давайте разберем каждый уровень подробно.
8 уровней организации живой природы
1. Молекулярный уровень организации живой природы
Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.
Поэтому именно он лег в основу классификации Живой природы на царства — какое питательное вещество является основным у организма: у животных — белок, у грибов — хитин, у растений это- углеводы.
Науки, которые изучают живые организмы именно на этом уровене:
2. Клеточный уровень организации живой природы
Включает в себя предыдущий — молекулярный уровень организации.
На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»
Науки, изучающие клеточный уровень организации:
Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.
3. Тканевый уровень организации:
Включает в себя 2 предыдущих уровня — молекулярный и клеточный.
Этот уровень можно назвать «многоклеточным» — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.
4. Органный (ударение на первый слог) уровень организации жизни
Тканевый и органный уровни организации — изучают науки:
5. Организменный уровень
Включает в себя все предыдущие уровни: молекулярный, клеточный, тканевый уровни и органный.
На этом уровне идет деление Живой природы на царства — животных, растений и грибов.
Характеристики этого уровня:
6. Популяционно-видовой уровень организации жизни
Включает молекулярный, клеточный, тканевый уровни, органный и организменный.
Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.
Основные процессы на этом уровне:
Науки, изучающие этот уровень:
7. Биогеоценотический уровень организации жизни
На этом уровне уже учитывается почти все:
Наука, изучающая этот уровень — Экология
Ну и последний уровень — высший!
8. Биосферный уровень организации живой природы
Он включает в себя:
Уровни организации жизни
Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.
Рис. 1. Молекулярно-генетический уровень
1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.
2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных — амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.
3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.
4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.
5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.
6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).
7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).
8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют «живые вещества», т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение «биокосные вещества», образовавшиеся в результате жизнедеятельности живых организмов и «косных» веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.
Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.
Заполните таблицу, показывающую структурные особенности каждого уровня организации:
Биология
Уровни организации живых систем
Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.
Каждый следующий уровень обязательно содержит в себе все предыдущие.
Давайте разберем каждый уровень подробно.
8 уровней организации живой природы
1. Молекулярный уровень организации живой природы
Химический состав клеток: органические и неорганические вещества,
Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.
На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.
Науки, которые изучают живые организмы именно на этом уровне:
Молекулярная биология, молекулярная генетика
2. Клеточный уровень организации живой природы
Включает в себя предыдущий — молекулярный уровень организации.
На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»
Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);
Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы
Науки, изучающие клеточный уровень организации: цитология, генетика, эмбириология
Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.
3. Тканевый уровень организации:
Включает в себя 2 предыдущих уровня — молекулярный и клеточный.
Обмен веществ; раздражимость
Этот уровень можно назвать «многоклеточным» — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.
4. Органный (ударение на первый слог) уровень организации жизни
У одноклеточных органы — это органеллы — есть общие органеллы — характерные для всех эукариотических или прокариотических клеток, есть отличающиеся.
У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.
Пищеварение; газообмен; транспорт веществ; движение и др.
Тканевый и органный уровни организации — изучают науки: ботаника,
зоология, анатомия, физиология, медицина
5. Организменный уровень
Включает в себя все предыдущие уровни: молекулярный, клеточный, тканевый уровни и органный.
На этом уровне идет деление Живой природы на царства — животных, растений и грибов.
Характеристики этого уровня: Обмен веществ (как на уровне организма, так и на клеточном уровне тоже )
Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания
Науки: анатомия, генетика, морфология, физиология
6. Популяционно-видовой уровень организации жизни
Включает молекулярный, клеточный, тканевый уровни, органный и организменный.
Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.
Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды
Основные процессы на этом уровне:
Взаимодействие организмов между собой (конкуренция или размножение)
Науки, изучающие этот уровень: популяционная генетика, эволюционистика, экология
7. Биогеоценотический уровень организации жизни
На этом уровне уже учитывается почти все:
Пищевое взаимодействие организмов между собой — пищевые цепи и сети
Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами
Наука, изучающая этот уровень — Экология
8. Биосферный уровень организации живой природы
Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы
Он включает в себя:
Взаимодействие как живых, так и неживых компонентов природы
Урок Бесплатно Уровни организации живых систем
Введение
Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).
То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.
Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного- клеточным уровнем.
Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.
Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.
Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.
Выделяют три большие группы уровней организации:
Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.
Организменный (или онтогенетический) уровень- это сам организм.
Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.
Мы с вами изучим основные уровни организации живых систем:
Суборганизменные уровни организации
1. Молекулярный уровень организации жизни
Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.
Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.
Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.
Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).
Основные процессы молекулярного уровня:
Науки, ведущие исследования на этом уровне:
У меня есть дополнительная информация к этой части урока!
Атомный (элементарный) уровень: на нем рассматривается роль отдельных химических элементов в живом организме (Fe, F, I, Se, Na).
Субклеточный уровень образован органеллами клетки (митохондриями, хлоропластами, рибосомами, лизосомами), ядром, хромосомами и другими субклеточными структурами.
На уровне субклеточных (надмолекулярных) структур ученые изучают строение и функции органелл, а также других включений клетки
2. Клеточный уровень организации жизни
Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).
Клетка- это структурная и функциональная единица всего живого.
Более подробную информацию о клетке вы можете узнать из урока «Клетка- основа жизни».
Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).
Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.
Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.
Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико, и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:
Вне клетки жизни нет. Такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.
У меня есть дополнительная информация к этой части урока!
Стволовыми клетками называются незрелые клетки особого типа, способные развиваться во все виды клеток, составляющих различные ткани организма.
Стволовые клетки в организме находятся как бы в спящем состоянии, у них замедлен обмен веществ.
Они являются резервом организма в случае возникновения различных стрессовых ситуаций (травмы, ранения, болезни).
После «активации» они служат «материалом» для восстановления (регенерации) пораженных органов или тканей.
Также стволовые клетки необходимы для непрерывно происходящей в организме физиологической регенерации (замена старых клеток на новые).
Ученые полагают, что из стволовых клеток в отдаленной перспективе можно будет выращивать практически любую ткань, что может помочь лечению многих заболеваний.
Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.
Основные процессы клеточного уровня:
Науки, ведущие исследования на клеточном уровне:
3. Тканевый уровень организации жизни
Единицей этого уровня является ткань.
Ткань— это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.
Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.
В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.
Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.
У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.
У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.
На этом уровне происходит специализация клеток.
Более подробно вы можете узнать о тканях из наших уроков: «Ткани растений» и «Ткани животных».
Компоненты тканевого уровня: клетки и межклеточная жидкость.
Основные процессы тканевого уровня: процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).
Наука, ведущая исследования на тканевом уровне:
4. Органный уровень организации жизни
Составляют этот уровень органы многоклеточных организмов.
Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.
Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.
У меня есть дополнительная информация к этой части урока!
У простейших организмов, конечно же, нет тканей и органов, так как они состоят всего из одной клетки, но функции пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл в их клетках.
Организменный уровень организации жизни
Все живое на Земле существует в виде обособленных субъектов- особей, которые формируют организменный уровень.
При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия, простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным и организменным уровнем организации.
Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.
Основные процессы органного уровня:
Науки, ведущие исследования на органном уровне:
У меня есть дополнительная информация к этой части урока!
Биометрия- система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и так далее).
К примеру, в Китае активно используется технология распознавания лиц в различных областях, начиная от оплаты покупок до общественной безопасности.
Пройти тест и получить оценку можно после входа или регистрации
Биогеоценоз как единица эволюции биосферы: представления А.В. Яблокова
В одной из последних статей известного ученого эволюциониста и эколога А. В. Яблокова кратко представлен его взгляд на механизмы эволюции на экосистемном уровне организации жизни. Ученый предлагает методологические подходы для исследования эволюции биосферы в рамках обоснования существования особенностей процесса эволюции на экосистемном уровне. Для этого выделяет элементарные (для этого уровня организации) эволюционные – структуру (единицу), материал и события, по аналогии с популяционно-видовой формой живого в методологическом подходе синтетической теории эволюции. Предлагается считать биогеоценоз элементарной эволюционирующей структурой, а элементарным материалом эволюции – генофонд видовой популяции, обитающей на территории биогеоценоза. Специфику эволюции на экосистемном уровне организации в авторской концепции определяет наличие основного направленного фактора (причины) эволюции – естественного группового отбора (отбора коадаптированных ассоциаций генотипов).
Загляните в библиотеку диссертаций по биологии и вы без труда найдете уйму «эволюций»: «Эволюция летательного аппарата…», «Эволюция системы пищеварения…», «Эволюция каких-нибудь мух…» и, наконец, «Эволюция морских и наземных экосистем где-то и когда-то там» и т.д. и т.п. Слово одно, но все это разные процессы, просто даже совершенно разные. Неспециалист попадает в плен терминологического жаргона (а вот биологи учитывают эту подводную часть айсберга). Начиная с теории Ч. Дарвина, эволюция в узком смысле принимается как процесс изменения (превращения) одного вида в другой (-ие), а не как изменение какого-то отдельного органа, молекулы (хоть бы она и ДНК!) или целого иного, чем вид, таксона организмов (заглавная иллюстрация). Именно этот процесс был тщательно методологически проработан в синтетической теории эволюции (СТЭ) и терминологически обособлен понятием «микроэволюция». СТЭ определила элементарные эволюционирующие единицы (популяции), факторы эволюции (естественный отбор, дрейф генов и др.), элементарное эволюционное событие (изменение генотипического состава популяции) и материал (мутации). Все это было сделано к середине прошлого столетия. Однако после этого немало копий было сломано на тему – считать или не считать эволюцию экосистем отдельным, оригинальным процессом. В статье А.В. Яблокова, известного в нашей стране биолога, кратко изложена одна из таких концепций, зародившаяся в самое «горячее время» СТЭ. Автор статьи считает несомненным наличие эволюционной специфики и целостности на уровне экосистемы. Он различает уровни живого на те, что выделены по принципу «удобства изучения» и благодаря используемым методам, такие как субмолекулярный, молекулярный, геномный, клеточный,…. популяционный, и др., и уровни организации, имеющие собственные, эмерджентные свойства. К последним автор относит биосферно-биогеоценотический, онтогенетический, популяционно-видовой и молекулярно-генетический уровни организации живого. Этот подход берет начало в трудах Н.В. Тимофеева-Ресовского (1958, 1962, 1970; кратко можно посмотреть здесь). Основываясь на этих двух «концептуальных китах» – СТЭ и четырехуровневой системе организации живого – автор предлагает экосистемный, а не популяционно-видовой, методологический подход к исследованию (эволюционных) изменений биосферы.
Итак, предлагается выделить элементарные компоненты эволюции на уровне экосистем по аналогии с таким выделением на популяционно-видовом уровне (СТЭ) (Таблица). Элементарной эволюционирующей единицей, по мнению автора, является биогеоценоз (БГЦ). Здесь надо учитывать тот факт, что это понятие существует почти исключительно в русскоязычной научной литературе, в зарубежной традиции применяется только емкий термин «экосистема». Основной отличительной чертой биогеоценоза, заложенной в определение этого понятия, является именно целостность и специфика взаимодействий его компонентов (в том числе привязка к определенной территории). Однако выделить на практике этот «кирпичик» эволюции биосферы не так легко, как написать его определение.
Элементарным эволюционным событием на экосистемном уровне в рамках предлагаемой концепции признается устойчивое изменение видового состава. Однако здесь следует учитывать тот факт, что во время сукцессии происходят изменения композиции видовых популяций, поэтому биоценоз (состав видов БГЦ) всегда шире, чем число видов на каждой из фаз сукцессии. Поскольку внутри экосистемы на уровне популяций разных организмов идет постоянный процесс адаптации, что ведет к появлению новых видов, то именно этот процесс (микроэволюция) и ведет к эволюции БГЦ. Следуя этой логике, предлагается рассматривать генофонд каждой из популяций, составляющих БГЦ видов, элементарным материалом эволюции на экосистемном уровне. Таким образом, причиной эволюции БГЦ является естественный отбор. Однако автор представляет нам несколько другой вывод – групповой отбор, подразумевая, очевидно, широкую трактовку этого термина, а именно – отбор признаков, полезных для группы организмов на уровне отдельных сообществ («отбор коадаптированных ассоциаций генотипов» (sic)). Отсюда, заключает автор, следует, что на биогеоценотическом уровне в результате «… отбора преимущества должны получать одни биогеоценозы по сравнению с другими». На мой взгляд (КП), это утверждение несостоятельно в рамках самой концепции. Действительно, биоГЕОценоз (элементарная единица эволюции согласно предложенному подходу) является таковым лишь на данной территории, а соседний БГЦ привязан к другой территории. Следовательно, если конкуренция между БГЦ приводит к «вытеснению» одного другим, то мы имеем дело только с биотической составляющей БГЦ, а это разрушает представление о БГЦ как элементарной единице эволюции.
Как эволюционирующей единице, БГЦ требуется свой показатель эволюционной успешности (аналог приспособленности в СТЭ). Таким показателем может быть, по мнению автора статьи, «устойчивость БГЦ по отношению к внешним и внутренним возмущениям». При этом автор пишет, что было бы интересно проанализировать устойчивость разных БГЦ, тем самым признавая абсолютную умозрительность этого показателя на данный момент. К сожалению, нет никаких определенных указаний и на то, как вычислять (оценивать) этот показатель.
Хотелось бы особо отметить, что представленный подход является выражением идей автора статьи – А.В. Яблокова, зародившихся в период полного и безраздельного царствования в мировой науке СТЭ, т.е. популяционно-видового подхода. На данный момент существует ряд других теоретических представлений как о самом процессе структуризации (и эволюции) экосистем, так и о методологии его изучения. Среди них оригинальные взгляды В.А. Красилова и В.В. Жерихина, которые на много лет вперед определили направление научных исследований в области палеоэкологии, и новейшие идеи, основу которых составляют представления о самоорганизации биоты (синергетика), и взгляды, представленные В.Г. Мордковичем, в другой статье из настоящего номера «Журнала общей биологии».

















