Бризантность и фугасность в чем разница

Бризантное и фугасное действия взрыва

Разрушительное действие взрыва обусловлено работой, кото­рую совершают газообразные продукты взрыва при расшире­нии.

Различают две основные формы внешней работы взрыва – бризантное и фугасное действие.

Бризантностью называется способность взрывча­тых веществ (точнее их ГПВ) к местному разрушительному действию, которое является результатом резкого удара продуктов взрыва по окру­жающим ВВ предметам.

Бризантное действие проявляется лишь на близких расстояниях от места взрыва, где давление и плотность энергии продуктов взрыва еще достаточно велики. Максимальный эффект бризантности проявляется при непосредственном контакте заряда ВВ с окру­жающей средой, причем при условии распространения детона­ционной волны в направлении, перпендикулярном к преграде.

За счет бризантного действия происходит измельчение, пробивание или дробление среды, соприкасающейся с зарядом взрывчатого ве­щества. Применительно к металлической оболочке заряда бризантность ВВ определяет характеристики осколочности боеприпасов; применительно к взрыву заряда на преграде – характер местных разрушений.

Опыт показывает, что бризантное действие ВВ зависит от энергетических характеристик ВВ, их плотности, скорости дето­нации и максимального давления ГПВ на фронте детонацион­ной волны, которое иногда называют «детонационным давлением».

Теоретически бризантность принято оценивать по величине мощности ВВ, отнесенной либо к единице веса, либо к единице объема заряда, а так же как объемную плотность мощности взрыва или поток энергии, проходящий через единицу площади за единицу времени.

Все теоретические формулы для расчета бризантности носят условный характер и применяются только для сравнительной оценки бризантности различных взрывчатых веществ.

Экспериментально бризантность оценивается по величине обжатия свин­цового цилиндра определенных размеров при взрыве на нем определенного количества испытуемого взрывчатого вещества.

При взрыве свинцовый цилиндр обжимается и приобретает форму гриба. Разность высот цилиндра до и после взрыва служит мерой бризантности ВВ. Оценка бризантности может быть произведена также по степени дробления металлической обо­лочки, окружающей заряд, или металлической плиты, на которую он установлен. Критерием бризантности в этом случае служит число осколков весом более 1 г, отнесенное к единице веса раз­рывного заряда.

Фугасностью называется способность взрывчатых веществ к разрушительному действию за счет расширения про­дуктов взрыва до сравнительно невысоких давлений и прохож­дения по среде ударной волны.

Очень часто фугасность называют работоспособ­ностью взрывчатого вещества. В качестве меры фугасности в теоретических расчетах используют потенциал П ВВ или его удельную энергию. Однако фугасность и удельная энергия взрывчатого вещества понятия не тождественные. Опыт показывает, что кроме потенциала П или удельной энергии Qw, на фу­гасное действие оказывают существенное влияние такие харак­теристики, как удельный объем и состав газообразных продук­тов взрыва. Учитывая это, фугасность оценивают условными характеристиками, определяемыми экспериментально.

Для прак­тической оценки фугасности используют так называемую пробу на расширение свинцовой бомбы. Заряд испытуемого ВВ массой 10 г взрывают в цилиндрическом канале свинцовой бомбы опре­деленных размеров. После взрыва канал расширяется и приоб­ретает грушевидную форму. Мерой фугасности принимается из­менение объема канала.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Фугасное и бризантное действие взрыва

Многочисленные формы механической работы продуктов взрыва удобно объединить в две основные группы: фугасные и бризантные.

Если энергетические характеристики ВВ определяют их потенциальные возможности, т.е. способность совершать некоторую работу (разрушение, метание и т.д.), то характеристики бризантности и фугасности позволяют оценить особенности выделения энергии, т.е. по их значению можно составить представление о самом процессе совершения работы продуктами взрыва.

Бризантность – это способность ВВ (точнее их газообразных продуктов взрыва) к местному разрушительному действию, которое является результатом резкого удара продуктов детонации по окружающей ВВ среде.

Бризантное действие ВВ проявляется лишь на близком расстоянии от места взрыва, где давление и плотность энергии газообразных продуктов взрыва велики. Максимальный эффект бризантности проявляется при непосредственном контакте заряда ВВ с окружающей средой, при условии распространения детонационной волны в направлении перпендикулярном преграде. Внешнее проявление бризантности заключается в дроблении среды. Опыт показывает, что бризантное действие зависит от энергетических характеристик ВВ, их плотности, скорости детонации и давления газообразных продуктов взрыва на фронте детонационной волны (иногда говорят «детонационное» давление).

Многие исследователи предлагали характеристики для оценки бризантности. Каст предложил вначале бризантность определять (ВП) по формуле

Бризантность и фугасность в чем разница, (вт/м 3 ), (2.45)

где П – потенциал ВВ (Дж/кг),

Позже Каст предложил заменить потенциал на силу (¦) равную ¦=взр и принять, что время взрыва t обратно пропорционально скорости детонации (D). С учетом этого можно записать

Снитко, учитывая, что между П и f нет прямой пропорциональности, предложил вместо П использовать теплоту взрыва QV , а время взрыва выразить не только через скорость детонации (D), но и через линейный размер заряда lо, например его длину:

Бризантность и фугасность в чем разница, ( Бризантность и фугасность в чем разница). (2.47)

В – называется энергетическим напряжением при взрыве.

Формулы (2.45-2.47) применяются при количественной оценке бризантности. Однако они все носят до некоторой степени условный характер. Для оценки бризантности часто используют экспериментальные характеристики.

Наиболее простым и распространенным методом испытания на бризантность является проба на обжатие свинцовых столбиков (проба Гесса, см. рис.2.9). Для испытания применяются свинцовые столбики (2) диаметром 40 мм и высотой 60 мм. Свинцовый столбик располагают на массивной стальной плите (1) в вертикальном положении. На столбик помещают стальную пластинку (3) толщиной 10 мм и диаметром 41 мм, на которую устанавливается заряд (4) испытываемого ВВ массой 50г в бумажной оболочке диаметром 40 мм. При взрыве заряда ВВ (инициирование детонационным шнуром (5)) свинцовый столбик деформируется. Мерой бризантности ВВ является величина обжатия, т.е. разность высот столбика до и после обжатия:

где h1 – высота столбика до взрыва, равная 60 мм,

П.Ф.Похил и М.А.Садовский рекомендуют оценивать бризантность (В) величиной а. Функция «а» учитывает усиление сопротивления столбика по мере обжатия:

где D h – величина обжатия столбика, т.е. бризантность, h1 – высота столбика до обжатия, h2 – высота столбика после обжатия.

Бризантность и фугасность в чем разница

а- до взрыва, б- после взрыва

При испытании ВВ с низкой детонационной способностью пробу Гесса несколько изменяют, помещая ВВ в стальные кольца в количестве 100 г, при этом несколько (

2 раза) увеличивается длина заряда. При малой восприимчивости ВВ к капсюлю-детонатору для возбуждения детонации применяют шашки из прессованного тетрила массой 5 г.

Для приближения лабораторных условий опыта к производственным Л.И.Бароном, Б.Д.Росси и С.П. Левчиком предложен метод оценки бризантного действия промышленных ВВ по дроблению кубиков горной породы (см. рисунок 2.11).

Обычно определяют суммарный массовый выход (в%) фракции крупностью 5-7 мм.

Бризантность и фугасность в чем разница

1- забойка, 2- заряд ВВ, 3- кубик из горной породы

В качестве меры фугасности в теоретических расчетах используют потенциал (или величину потенциальной энергии) П (Е) ВВ или его удельную энергию U1. Опыт показывает, что, кроме потенциала П (Е) или удельной энергии U1, на фугасное действие оказывают существенное влияние такие характеристики, как удельный объем и состав газообразных продуктов взрыва. Для практической оценки фугасности (относительной работоспособности) используют так называемую пробу на расширение свинцовой бомбы (проба Трауцля).

Стандартная проба – это цилиндр размером 20х20 см 2 с осевым отверстием диаметром 2,5 и высотой 12,5 см. Исследуемый заряд массой М=10 г помещается на дно канала бомбы и засыпается сухим кварцевым песком, выполняющим роль забойки. За меру работоспособности Вв принимается приращение объема полости в кубических сантиметрах (DV) за вычетом расширения, производимого детонатором (Vд):

Величины бризантности В (мм) a и фугасности Аф (см 3 ) приведены ниже.

В настоящее время для оценки работоспособности применяют метод по воронке выброса и метод по тротиловому эквиваленту.

где q – масса заряда, необходимая для выброса единицы объема грунта необходимого по так называемым нормативным воронкам выброса (r/Г=1).

Тротиловый эквивалент – это относительная величина, показывающая, какой массе тротила эквивалентна единица массы исследуемого ВВ по интенсивности, образуемой при взрыве ударной волны:

кТ = Бризантность и фугасность в чем разница. (2.51)

Интенсивность определяют по величине изменения давления на фронте ударной волны.

Для простоты иногда кТ характеризуют отношением теплоты взрыва исследуемого ВВ к теплоте взрыва тротила.

* М*- средняя молекулярная масса продуктов взрыва

Дата добавления: 2018-02-15 ; просмотров: 3718 ; Мы поможем в написании вашей работы!

Источник

ВВ за рюмкой чая — о сравнении взрывчатых веществ.

Что же у нас есть и зачем понаизобретали столько разных ВВ, если самого мощного так и не нашли? А есть у нас, дорогие читатели, «оптимальное для данной задачи взрывчатое вещество». Вся соль в «для данной задачи», ибо задачи перед взрывчатыми веществами ставятся самые разнообразные, и хорошо показавшее себя в одной из них, может быть неприемлемым для иных задач. Иными словами, выбирать можно и должно, но не по критерию «самое лучшее», для корректного выбора потребуется сравнить множество параметров, зачастую взаимоисключающих. Придется учитывать условия эксплуатации, конструкционные особенности самого заряда, материал и конфигурацию боеприпаса, желаемый эффект и так далее. На каждом этапе будут отсеиваться те или иные рецептуры, и из оставшихся в финале будет производиться выбор в пользу наиболее полно удовлетворяющего всем требованиям, либо обеспечивающего наибольший эффект. Не стоит забывать и про экономический фактор.

Бризантность и фугасность в чем разница

Вернемся к началу – как же люди сравнивали между собой взрывчатые вещества на заре их появления? Когда химия окончательно сложилась как точная наука и были подтверждены теории о строении вещества, произошел буквально прорыв в химии взрывчатых веществ. Ведь что такое теория? Это не инструмент объяснения, как думает большинство обывателей: «сегодня была выдумана теория X, которая объясняет Y! Ура, товарищи!». Нет, в первую очередь любая теория, это инструмент предсказания. И то, насколько точно та или иная теория может предсказать результат наших действий, определяет место данной теории в храме науки. Будет она блистать пред алтарем, или тихонько копошиться в урне перед входом. В XIX веке теория о строении и свойствах органических нитросоединений предсказывала, что у них есть немалый потенциал в роли взрывчатых веществ. Все эти десятки веществ, открытые за пару десятилетий вовсе не случайны (хорошо, в основном не случайны), но базировались на научном предположении, что в нитросоединениях заключена большая потенциальная энергия. Потому то сотни химиков по всему миру и бросились нитрировать все и вся, периодически наталкиваясь на искомые свойства синтезируемых веществ. И вот, совершенно неожиданно, вместо старого доброго дымного пороха, пред очи человека с погонами толпа химиков всех мастей вываливает мешок и три авоськи всевозможных рецептур и смесей, способных тем или иным образом взрываться. Что делать?

И господа ученые выдали на гора феерию способов сравнить «вещество А с веществом Б». Методы местами были странные, местами нелепые, но многое из предложенного звучало разумно и, что более важно, раз за разом давало предсказуемый результат. То есть, если метод Х утверждает, что граната снаряженная веществом А проломит больше досок, чем такая же, снаряженная веществом Б, и на практике это подтверждается, то метод имеет право на применение, так как, выше уже было отмечено – сила теории не в объяснении, а в предсказании. Довольно быстро было выяснено, что эффекты, производимые взрывчатыми веществами на окружающую среду разнообразны, и единого критерия сравнения быть не может. Для практического применения были избраны критерии сравнения по безопасности, дробящему эффекту и совершаемой работе.

Следующим пунктом шло сравнение действия, которое оказывает взрывчатое вещество. Здесь все оказалось сложнее. Пока номенклатура испытываемых веществ была невелика, а их действие подобно, выработанные методики сравнения давали хоть и с оговорками, но имеющий предсказательную силу результат. Типичный пример: хорошо известная всем интересовавшимся темой проба на бризантность по методу Гесса. Навеска из 50 грамм взрывчатого вещества, подпрессованная до плотности 1 грамм на кубический сантиметр, взрывается на свинцовом цилиндре с заданными размерами. Уменьшение высоты цилиндрика после взрыва считается мерой дробящего (бризантного) действия испытуемого вещества. На первый взгляд все отлично, испытывай разные составы, сравнивай миллиметры уменьшения высоты, и который сильнее сплющил свинцовый столбик, тот и лучше! Но вот появились взрывчатые вещества с высокой скоростью детонации, и навеска в 50 грамм полностью уничтожала испытуемый цилиндр. Грубо говоря, испытуемая величина вышла за пределы шкалы измерения, а «продлить» шкалу нет возможности. Ведь если удлинить свинцовый столбик, это исказит предыдущие опыты и придется пересравнивать все до единого результаты, всех взрывчатых веществ. Аналогичная картина и с рецептурами, чья насыпная плотность выше единицы, либо с жидкими составами, чья плотность отличается от единицы. Результаты их испытаний были не релевантны, так как получены в отличных от всех остальных опытов условиях и в таблицы пошли мелким шрифтом сноски, что вот эти миллиметры суть другие и прямому сравнению не подлежат.

Другой пример: проба на бризантность по стальной пластине. Потенциально более точный метод с широким диапазоном измерения результатов: на стальной пластине со строго определенными механическими свойствами подрывается навеска испытуемого состава, и по объему оставленной воронки определяется дробящая способность. Привязка к плотности отсутствовала, наоборот, можно было проследить, как меняется действие взрывчатого вещества в зависимости от плотности запрессовки. Минусов у способа было ровно два: трудность с выдерживанием механических свойств стали с требуемой точностью, и сложности определения объема кратера. Только относительно недавно были разработаны автоматизированные методы измерения как самой тестовой пластины, так и объема оставленного на ее поверхности углубления, и теперь этот метод весьма популярен на западе.

Ситуация с измерением фугасного действия обстояла не лучшим образом. Наиболее распространенный тест в свинцовой бомбе дает большую погрешность в измерениях (на результат влияло даже качество песка, используемого для забивки) и невозможность прямого сравнения новых взрывчатых веществ, выходящих за шкалу измерений.

К чему это все было написано? Чтобы дать понять: определение «самого мощного взрывчатого вещества» мгновенно наталкивается на проблему отсутствия объективного метода сравнения и разнообразность измеряемых характеристик. И если принять все условности методов сравнения, практическое применение тоже наталкивается на сложности. Для объяснения вновь немного углубимся в теорию, хотя и без формул. Как мы помним, ударная волна в массе взрывчатого вещества поддерживается расширением газообразных продуктов реакции. Между кристаллами ударная волна несколько ослабевает, внутри них наоборот, разгоняется. Следовательно, чем плотнее упаковано взрывчатое вещество, чем выше его плотность, чем больше молекул в единице объема прореагирует и меньше будут потери ударной волны в промежутках между кристаллами. Иными словами, дробящие свойства взрывчатого вещества зависят от его плотности, как абсолютной, так и фактической плотности при прессовании, и зависимость эта не линейная, а степенная. Но испытания проводятся при плотности единица!

Рассмотрим конкретный пример пироксилина и тринитротолуола. По справочникам тех лет, работа сухого пироксилина в свинцовой бомбе Трауцля составляет 420 кубических сантиметров, тринитротолуола 360. Казалось бы, пироксилин выгоднее для снаряжения боеприпасов, и с некоторыми трудностями можно мириться, как платой за могущество. Однако, вспоминаем, что данные получены при плотности один грамм на кубический сантиметр. Прессованный пироксилин имеет плотность немного выше 1,2 в то время как тринитротолуол уже 1,58. Далее, пироксилин требуется флегматизировать увлажнением до 18-22%, что дополнительно снизит его работоспособность, часть энергии потратится на испарение воды и нагрев пара. И вспомним, что дробящее действие зависит от плотности заряда нелинейно, то есть 30% повышение плотности над пироксилином оборачивается существенной прибавкой бризантности тринитротолуола. В итоге, уступая пироксилину на 15% в фугасности по методу Трауцля, тринитротолуол с лихвой отыгрывает это отставание тем, что в каморе снаряда его будет на 30% больше и его дробящее воздействие окажется в 1,5-2 раза выше, в то время как пироксилин будет дополнительно ослаблен большим содержанием воды в заряде.

Что поделать, но придется нашему герою снять китель и, надев лабораторный халат проверять на практике, обстрелами мишеней и подрывом в грунте красивые цифры господ ученых. Лучше, конечно, проучить это дело кому-либо другому, званием пониже, и делать это как можно дальше от своего кабинета. Во избежание. Вот уже исполнители, составят свои таблицы пересчета и поправочных коэффициентов, которые в будущем используют инженеры при проектировании боеприпасов и выборе типа взрывчатого вещества для них.

Как можем видеть, старые таблицы с показателями фугасности и бризантности по методам Трауцля, Гесса или Каста не дают однозначного ответа на вопрос – какое взрывчатое вещество лучше. Они даже не всегда дают адекватное представление о свойствах самих сравниваемых веществ, что называется «вообще». Ныне эти методы почти не применяются, уступив более объективным и показательным пробам на торцевое метание, давление во фронте ударной волны и скорость детонации. Торцевое метание металлической пластины показывает, какую скорость придаст навеска взрывчатого вещества при рабочей плотности стальной пластине, плотно прижатой к торцу испытуемого заряда определенной формы. Это важный показатель бризантности и эффективности рецептуры для снаряжения кумулятивных зарядов. Обычно используется в процентном выражении, где за 100% принимается тест октогена. Давление во фронте ударной волны на определенных расстояниях показывает характеризует способность взрывчатого вещества наносить повреждения удаленным объектам и в целом, фугасность. Ценность данного теста, в отличие от метода Трауцля в том, что некоторые взрывчатые вещества обладают «медленным» характером и продукты реакции догорают в воздухе, подпитывая ударную волну. Подрыв пробы такого вещества в замкнутом объеме свинцовой бомбы не дает объективной картины, демонстрируя заниженные показатели фугасности. Не говоря уже о том, что испытать таким образом аэрозольные составы принципиально невозможно.

Источник

О взрывчатых веществах (ВВ)

Бризантность и фугасность в чем разница

При взрыве же типа детонации процесс передачи энергии обуславливается прохождением ударной волны по ВВ со сверхзвуковой скоростью (6-7 тыс. м. в секунду). В этом случае газы образуются очень быстро, давление возрастает мгновенно до очень больших величин. Проще говоря, у газов нет времени уходить по пути наименьшего сопротивления и они в стремлении расшириться, разрушают все на своем пути. Этот тип взрыва характерен для тротила, гексогена, аммонита и т.п. веществ.

Для того, чтобы начался процесс взрыва (далее он развивается самопроизвольно) необходимо внешнее воздействие, требуется подать на ВВ определенное количество энергии. Внешние воздействия подразделяются на следующие типы:

В зависимости от типа взрыва и чувствительности к внешним воздействиям все ВВ делят на три основные группы:

Бризантные ВВ. Это, собственно и есть то, о чем говорят и пишут. Ими снаряжают снаряды, мины, бомбы, ракеты, фугасы; ими взрывают мосты, автомобили, бизнесменов….

Бризантные ВВ по их взрывным характеристикам делят на три группы:

ВВ повышенной мощности несколько более чувствительны к внешним воздействиям и поэтому их чаще применяют в смеси с флегматизаторами (веществами, понижающими чувствительность ВВ) или в смеси с ВВ нормальной мощности для повышения мощности последних. Иногда ВВ повышенной мощности применяют в качестве промежуточных детонаторов.

Все ВВ характеризуются рядом данных, в зависимости от величин которых решается вопрос о применении данного вещества для решения тех или иных задач. Наиболее существенные из них это:

Достаточно полно свойства ВВ можно описать, используя все девять характеристик. Однако для понимания в целом того, что обычно называют мощностью или силой можно ограничиться двумя характеристиками: «Бризантность» и «Фугасность».

Отсюда становится достаточно ясно, что для различных целей подходят различные ВВ. Например, для взрывных работ в грунте (в шахте, при устройстве котлованов, разрушении ледяных заторов и т.п.) больше подойдет ВВ, обладающее наибольшей фугасностью, а бризантность подойдет любая. Наоборот, для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

Ниже приведены две эти характеристики нескольких типов ВВ:

Взрывчатое
вещество
ФугасностьБризантность
Гексоген49024
Тротил28519
Пластит28021
Аммонит 6ЖВ36014

Из этой таблицы видно, что для устройства котлована в земле лучше подойдет аммонит, а для снаряжения снарядов пластит.

Впрочем, это сильно упрощенный и не вполне верный подход к пониманию мощности взрывчатых веществ. Я допустил это упрощение с тем, чтобы предельно просто рассказать о свойствах ВВ. На самом деле все девять характеристик тесно связаны друг с другом, друг от друга зависят, и изменение одной из них влечет изменение и всех остальных.

Источник

Бризантность, фугасность. Характеристика, способы определения.

Группа немедленного реагирования. Задачи, состав, порядок действий.

Для оперативного реагирования на сообщения о совершении противоправных действий, возникновении чс на охраняемых объектах, а также для принятия незамедлительных мер по поиску, преследованию и задержанию нарушителей создаются группы немедленного реагирования (ГНР). ГНР комплектуется за счет установленной численности и отдельным структурным подразделением не является. Для состава ГНР предусмотрено круглосуточное дежурство.

Группа немедленного реагирования:1)стрелок-старший группы2)стрелок-водитель3)усиление-1-2 стрелка

Взрывоопасные предметы и вещества. Виды, основные характеристики.

Для взрывчатых веществ характерны 2 режима хим. превращения — детонация и горение.

Распространение со сверхзвуковой скоростью зоны быстрой реакции в результате передачи энергии посредством ударной волны. Материалы, находящиеся в контакте с зарядом детонирующего ВВ, сильно деформируются и дробятся (местное или бризантное действие взрыва), а образующиеся газообразные продукты при расширении перемещают их на значительное расстояние (фугасное действие).

Бризантность, фугасность. Характеристика, способы определения.

Бризантность – способность ВВ при взрыве производить дробление среды в непосредственной близости к заряду. Чем мельче осколки, тем более бризантно в-во.

Измерение бризантности-проба Гесса. Этот способ исп-ся для промышленных ВВ как стандартный по ГОСТ 5984-99. Испытание проводят путем подрыва заряда массой 50 гр, установленного на свинцовом цилиндре диаметром 40 мм и высотой 60 мм. После подрыва заряда измеряется уменьшение высоты свинцового цилиндра. Разность между средними высотами цилиндра до и после взрыва является мерой бризантности ВВ. Измеряется в мм.

Фуга́сность — хар-ка ВВ. Служит мерой его общей работоспособности, разрушительного, метательного и иного действия взрыва. Основное влияние на ф. оказывает объем газообразных продуктов взрыва.

Ф. определяют и выражают в относительных единицах по сравнению со стандартными взрывчатыми веществами (как правило, кристаллическим тротилом). Для измеренной фугасности часто применяют термин тротиловый эквивалент.

Троти́ловый эквивалент — мера энерговыделения высокоэнергетических событий, выраженная в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.

Наиболее простым и распространенным является проба Трауцля. Этот способ в РФ используется для промышленных взрывчатых веществ как стандартный по ГОСТ 4546. Испытание проводят путем подрыва заряда массой 10 гр., установленного внутри свинцового цилиндра. До и после подрыва заряда измеряется объём полости внутри цилиндра. Разность между ними с учетом влияния температуры и капсюля-детонатора сравнивается с результатами испытания кристаллического тротила.

Бризантность и фугасность в чем разница

Средства детонации:1) капсюли-детонаторы 2)электродетонаторы 3)минные детонаторы(запалы) 4)детонирующие шнуры.

Ка́псюль-детона́тор— устр-во для инициации детонации ВВ от огнепроводного шнура. Представляет собой металлическую (стальную, медную или алюминевую) или бумажную гильзу, снаряженную инициирующими ВВ. Дно гильзы может быть плоским или вогнутым (с кумулятивной воронкой). Гильза заполняется ВВ примерно на 2/3 своей длины, незаполненная часть служит для введения Огнепровод.Шнур. В донной части капсюля-детонатора обычно находится заряд тетрила, масса его в отечественных КД — 1.2 г. Над тетрилом — гремучая ртуть (фульминат ртути) или двухслойный заряд азид свинца + тринитрорезорцинат свинца (ТНРС). Последний применяется для повышения чувствительности КД к искрам от огнепроводного шнура. Электродетонатор – устройство для возбуждения детонации заряда взрывчатого вещества с помощью электрического тока. Состоит из капсюля-детонатора и электровоспламенителя, размещенных в одной гильзе.

Детонирующий шнур – предназначен для передачи детонации от капсюля-детонатора к зарядам, находящимся иногда на значительном (в сотни метрах) удалении от места инициирования и друг от друга. Имеет наружный диаметр 5—6 мм и состоит из нескольких слоёв льняных или хлопчатобумажных (иногда стеклянных) нитей, образующих трубочку, заполненную порошкообразным взрывчатым веществом с высокой детонационной способностью. Скорость детонации шнура, содержащего ТЭН, 6,5 км/сек. В 1 м ДШ содержится обычно 12—13 г вв. Во избежание проникновения внутрь ДШ воды его заключают в пластмассовую оболочку или пропитывают внешние слои водостойкой мастикой. Наружный слой ДШ (в отличие от огнепроводного шнура) окрашен в красный цвет или содержит красные нити.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *