Бытовая радиоэлектронная аппаратура что к ней относится
Какие технически сложные товары не подлежат обмену в 14 дней?
Технически сложный товар, обмену и возврату не подлежит! Эту фразу вы часто слышите от продавца при попытке сдать обратно в магазин качественный смартфон или планшет. Продавцы ссылаются на 14 дней и на какой-то перечень. Кот-юрист из нашего Телеграм-канала @kotjurist выясняет, что из техники подлежит обмену, а что нет.
Какой такой перечень?
На самом деле перечней с технически сложными товарами два, и их часто путают.
14 дней
Многие покупатели искренне верят: в первые 14 дней можно вернуть в магазин что угодно и в каком угодно состоянии. Это не так. 14 дней даются только на возврат качественных товаров, у которых не подошли размер, цвет, комплектация, форма, габариты, фасон, расцветка. Еще 2 важных условия обмена / возврата — сохраненный товарный вид (не пользовались, есть упаковка) и отсутствие товара в 55 перечне. В обмене и возврате техники часто отказывают, поскольку в перечне есть пункт:
11. Технически сложные товары бытового назначения, на которые установлены гарантийные сроки.
Какую конкретно технику нельзя поменять?
Категории не подлежащей обмену и возврату техники прямо перечислены в 11 пункте в скобках. К части категорий отнести свою покупку можно без особых проблем:
Классификатор ОК 034-2014
Расшифровать остальные 4 категории поможет ОК 034-2014 — общероссийский классификатор продукции по видам экономической деятельности. На него ориентируются в решениях судьи, когда им нужно понять, подлежит ли конкретно этот товар возврату или обмену.
Не подлежат обмену и возврату
Судебная практика
Не уверены? Смотрите судебную практику. К примеру, Верховный Суд считает, что планшеты обмену и возврату не подлежат. Так решили в деле 78-КГ17-102: мужчина пытался обменять в Евросети 7 черных планшетов (цвет не подошел). В решении ВС сослался на классификатор ОК 034-2014. На уровне областных судов нашлись решения о не подлежащих обмену качественных телевизорах, смартфонах, ноутбуках, пылесосах, водонагревателях, холодильниках, газовых котлах и плитах.
Проще запомнить, что почти вся качественная техника не подлежит обмену и возврату, чем судиться. Поэтому стоит внимательнее подходить к ее выбору. Покупаете смартфон? Изучите в интернете все характеристики, посмотрите видеообзоры и меню телефона в магазине. Выбираете подарок? Уточните пожелания у именинника или подарите сертификат.
Бытовая радиоэлектронная аппаратура что к ней относится
АППАРАТУРА РАДИОЭЛЕКТРОННАЯ БЫТОВАЯ
Термины и определения
Domestic radioelectronic equipment. Terms and definitions
Дата введения 1989-01-01
В.В.Крупин (руководитель темы); И.Ф.Песьяцкий; Р.В.Вахник; Л.П.Меняева; В.В.Ирхин
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.09.87 N 3679
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Настоящий стандарт устанавливает термины и определения понятий бытовой радиоэлектронной аппаратуры.
Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.
1. Стандартизованные термины с определениями приведены в табл.1.
2. Для каждого понятия установлен один стандартизованный термин.
Применение терминов-синонимов стандартизованного термина не допускается. Недопустимые к применению термины-синонимы приведены в табл.1 в качестве справочных и обозначены пометой «Ндп».
2.1. Для отдельных стандартизованных терминов в табл.1 приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.
2.2. Приведенные определения можно при необходимости изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.
2.3. В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приведено и в графе «Определение» поставлен прочерк.
2.4. В табл.1 в качестве справочных приведены иностранные эквиваленты для ряда стандартизованных терминов на немецком (D), английском (Е) и французском (F) языках.
1. Бытовой радиоэлектронный аппарат
Радиоэлектронное устройство, применяемое в быту для выполнения одной или нескольких функций: приема, обработки, синтеза, записи, усиления и воспроизведения радиовещательных и телевизионных программ, программ проводного вещания, фонограмм, видеограмм, а также специальных сигналов
2. Бытовая радиоэлектронная аппаратура
Совокупность бытовых радиоэлектронных аппаратов
3. Монофонический бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат с монофоническим трактом сигналов
4. Стереофонический бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат со стереофоническим трактом сигналов
5. Стационарный бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат с сетевым электропитанием, конструкция которого не предусматривает элементы для переноса вручную
6. Переносной бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат с сетевым или универсальным электропитанием, конструкция которого предусматривает элементы для переноса его вручную и имеет уменьшенную относительно стационарных аппаратов массу
7. Носимый бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат с автономным или универсальным электропитанием, предназначенный для эксплуатации в процессе ношения с уменьшенными относительно стационарных аппаратов массой и габаритами
8. Миниатюрный бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат с автономным или универсальным электропитанием, предназначенный для эксплуатации в процессе ношения с уменьшенными относительно носимых аппаратов массой и габаритами
9. Транспортный бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат, предназначенный для эксплуатации в транспортных средствах, с питанием от бортовой электросети или универсальным электропитанием
10. Сувенирный бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат, предназначенный для использования в качестве игрушки или сувенира
11. Однокорпусный бытовой радиоэлектронный аппарат
Ндп. Моноблочный аппарат
Бытовой радиоэлектронный аппарат, конструктивно выполненный как единое целое
12. Разъемный бытовой радиоэлектронный аппарат
Однокорпусный бытовой радиоэлектронный аппарат, конструкция которого предусматривает возможность разъединения его на отдельные функционально и конструктивно законченные части
13. Блочный бытовой радиоэлектронный аппарат
Бытовой радиоэлектронный аппарат, выполненный в раздельных корпусах и едином художественно-конструкторском оформлении
14. Группа сложности бытового радиоэлектронного аппарата
Условная классификационная группа бытовых радиоэлектронных аппаратов, определяемая совокупностью основных параметров, конкретные значения которых обеспечивают заданный уровень технических характеристик
15. Бытовая акустическая система
Ндп. Звуковая колонка
Е. Acoustic enclosure
F. Enceinte acoustique
Бытовой радиоэлектронный аппарат, предназначенный для воспроизведения электрических сигналов звуковой частоты
16. Активная бытовая акустическая система
Бытовой радиоэлектронный аппарат, функционально и конструктивно объединяющий громкоговоритель и усилитель мощности сигналов звуковой частоты
17. Абонентский громкоговоритель
Бытовой радиоэлектронный аппарат, предназначенный для приема и воспроизведения трансляционных программ, передаваемых по сети проводного вещания
18. Трехпрограммный приемник проводного вещания
Бытовой радиоэлектронный аппарат, предназначенный для приема и воспроизведения трансляционных программ, передаваемых по сети трехпрограммного проводного вещания
19. Трехпрограммное устройство проводного вещания
Бытовой радиоэлектронный аппарат, предназначенный для приема трансляционных программ, передаваемых по сети трехпрограммного проводного вещания, с последующим воспроизведением через бытовую акустическую систему
20. Бытовой микрофон
21. Бытовой усилитель мощности сигналов звуковой частоты
Бытовой радиоэлектронный аппарат, предназначенный для усиления мощности электрических сигналов звуковой частоты
22. Бытовой предварительный усилитель сигналов звуковой частоты
Бытовой радиоэлектронный аппарат, предназначенный для усиления электрических сигналов звуковой частоты до уровня линейного выхода
23. Полный усилитель сигналов звуковой частоты
Бытовой радиоэлектронный аппарат, конструктивно объединяющий предварительный усилитель сигналов звуковой частоты и усилитель мощности сигналов звуковой частоты
Бытовой радиоэлектронный аппарат, предназначенный для усиления электрических сигналов звуковой частоты и коррекции амплитудно- и фазочастотной характеристик источника сигнала звуковой частоты для приведения их к стандартному виду
25. Активная бытовая антенна
Антенна с встроенным усилителем принимаемых сигналов, предназначенная для приема и усиления сигналов радио- и телевизионного вещания
Бытовой радиоэлектронный аппарат, предназначенный для приема и преобразования сигналов радиовещания в сигналы звуковой частоты
D.
Бытовой радиоэлектронный аппарат, конструктивно объединяющий тюнер и полный усилитель сигналов звуковой частоты
28. Бытовой электропроигрыватель
F. Platine tourne-disque
Бытовой радиоэлектронный аппарат, предназначенный для преобразования сигналов грампластинки в электрические сигналы звуковой частоты
29. Лазерный электропроигрыватель
Бытовой радиоэлектронный аппарат, предназначенный для преобразования сигналов компакт-диска в электрические сигналы звуковой частоты
30. Бытовой электрофон
Электрофон, конструктивно объединяющий электропроигрыватель, полный усилитель сигналов звуковой частоты и бытовую акустическую систему
31. Радиовещательный приемник
Бытовой радиоэлектронный аппарат, предназначенный для приема и воспроизведения радиовещательных программ
33. Бытовой магнитофон
Магнитофон, предназначенный для записи и воспроизведения сигналов звуковой частоты
Бытовой магнитофон, предназначенный для воспроизведения сигналов звуковой частоты
Бытовой радиоэлектронный аппарат, конструктивно объединяющий магнитофон-приставку, электропроигрыватель и полный усилитель
Бытовой радиоэлектронный аппарат, предназначенный для коррекции амплитудно- и фазочастотных искажений устройств воспроизведения и записи звука
40. Телевизионный приемник
D.
Е. Television receiver
F. 
Бытовой радиоэлектронный аппарат, предназначенный для приема и воспроизведения изображения и звука телевизионных программ
41. Телевизор цветного изображения
42. Телевизор черно-белого изображения
43. Проекционный телевизор
Е. Projection television receiver
Телевизионный приемник, предназначенный для воспроизведения изображения телевизионных программ путем оптической проекции на экран
44. Стереоскопический телевизор
Телевизионный приемник, предназначенный для объемного воспроизведения изображения и звука телевизионных программ
45. Бытовой видеомонитор
Бытовой радиоэлектронный аппарат без высокочастотного тракта, предназначенный для воспроизведения видеоинформации на телевизионном экране со звуковым сопровождением
Бытовой радиоэлектронный аппарат, предназначенный для приема и преобразования радиосигналов вещательного телевидения в видеосигналы и электрические сигналы звуковой частоты, воспроизведение которых осуществляется бытовым видеомонитором
Бытовой радиоэлектронный аппарат, конструктивно объединяющий тюнер и телетюнер
Бытовой радиоэлектронный аппарат, конструктивно объединяющий телевизионный приемник и тюнер
Бытовой радиоэлектронный аппарат, конструктивно объединяющий телевизионный приемник, тюнер и магнитофон-приставку
50. Бытовой видеомагнитофон
Е. Video tape recorder
F.
51. Бытовой видеопроигрыватель
D.
E. Videodisk recorder
F. 
Видеопроигрыватель, предназначенный для воспроизведения сигналов видеодиска через телевизионный приемник или бытовой видеомонитор
53. Бытовая видеокамера
E. Television camera
F. 

54. Видеомагнитофонная камера
Бытовой радиоэлектронный аппарат, конструктивно объединяющий бытовые видеокамеру и видеомагнитофон
55. Видеоигровое устройство
Бытовой радиоэлектронный аппарат, предназначенный для отображения игровой информации на экране телевизионного приемника или бытового видеомонитора
56. Адаптер телетекста
Бытовой радиоэлектронный аппарат, предназначенный для приема и запоминания электрических сигналов справочной алфавитно-цифровой информации телевизионных программ, передаваемых за время обратного хода луча по кадру с последующим отображением на экране телевизионного приемника или бытового видеомонитора
57. Адаптер видеотекста
Бытовой радиоэлектронный аппарат, предназначенный для приема и запоминания электрических сигналов алфавитно-цифровой информации, поступающих по телефонному каналу связи, с последующим отображением ее на экране телевизионного приемника или бытового видеомонитора
58. Видеообучающее устройство
Бытовой радиоэлектронный аппарат, предназначенный для формирования учебной (или) и обучающей информации, заложенной в запоминающее устройство на экране телевизионного приемника или бытового видеомонитора
Бытовой радиоэлектронный аппарат, предназначенный для отображения слайдов на экране телевизионного приемника или бытового видеомонитора
60. Цветомузыкальное устройство
Бытовой радиоэлектронный аппарат, предназначенный для светового цветного сопровождения музыкальных программ, связанного по амплитудно-частотным характеристикам с источником программ
61. Звуковой процессор
Бытовой радиоэлектронный аппарат, предназначенный для создания звуковых эффектов и повышения объемности и выразительности звучания
62. Вспомогательное бытовое радиоэлектронное устройство
Радиоэлектронное устройство, расширяющее потребительские возможности бытовой радиоэлектронной аппаратуры
63. Телевизионный конвертер
Вспомогательное бытовое радиоэлектронное устройство, предназначенное для преобразования принимаемых радиосигналов вещательного телевидения в дециметровом и сантиметровом диапазоне в сигналы метрового диапазона
64. Устройство дистанционного управления бытовым радиоэлектронным аппаратом
Вспомогательное бытовое радиоэлектронное устройство, предназначенное для управления работой бытового радиоэлектронного аппарата на расстоянии
65. Устройство шумопонижения
F. Dispositif de suppression de bruit
Вспомогательное бытовое радиоэлектронное устройство, предназначенное для уменьшения шумов при записи и (или) воспроизведении звука
66. Телевизионный антенный усилитель
Вспомогательное бытовое радиоэлектронное устройство, предназначенное для усиления радиосигналов вещательного телевидения, принятых антенной, с целью компенсации потерь, возникающих в соединительном антенном кабеле
67. Стереофонические наушники
Ндп. Стереофонический телефон
Два телефона с оголовьем, предназначенные для подключения к бытовым радиоэлектронным аппаратам
Бытовая радиоэлектронная аппаратура
В жизни современного человека особое место занимают товары сложнотехнического назначения.
В результате технического прогресса ассортимент этих товаров обновляется все чаще. Появляются новые поколения телевизоров, магнитофоны с цифровой записью, видеомагнитофоны, видеокамеры.
В ассортимент радиоэлектронной аппаратуры входит:
Радиоприемные устройства предназначены для приема программ, передаваемыми станциями радиовещания.
Потребительские требования к качеству определяется их электроакустическими параметрами.
1) по конструкции: стационарные, переносные, носимые;
2) по звучанию: моно, стерео;
3) по характеру зарядки пленки: катушечные, кассетные;
4) по элементам питания: сетевые, автономные, универсальные.
Ассортимент: катушечные, кассетные, плееры, лазерные проигрыватели, музыкальные центры, диктофоны, видеомагнитофоны.
Качество устанавливается путем внешнего осмотра. Основные параметры определяют спец. приборами. На сорта не подразделяют, потому не должно быть дефектов.
1) По назначению: однофункциональные, многофункциональные.
2) По особенностям элементной базы (7 поколений)
3) От источников питания: сетевые, автономные, универсальные
4) По виду изображения: цветные, черно-белые
5) По характеру звучания: моно, стерео, псевдозвук
6) По размеру экрана (импортные в дюймах)
7) По месту установки: стационарные, переносные
8) По количеству принимаемых каналов
9) По дополнительным функциям
Классифицируются по количеству видеоголовок, по системе записи видеоинформации и по формату записи. Основные параметры: режимы скорости (записи); количество систем; сервисные функции; потребляемая мощность; масса и габариты.
Требования к качеству.
Радиоэлектронные товары должны иметь привлекательный внешний вид, современное оформление. Не допускаются дефекты на корпусе. Электроакустические параметры должны соответствовать требованиям стандартов. Товары снабжаются паспортом и руководством по эксплуатации. Номер аппаратуры указывается в паспорте и на корпусе. Маркируют с указанием торгового наименования, товарного знака завода-изготовителя, дата выпуска и номера ГОСТа.
Радиопередача — это способ передачи информации на расстояние без проводов с помощью радиоволн, т.е. электромагнитных колебаний.
Этот способ был открыт и впервые продемонстрирован на заседании русского физико-технического общества 7 мая 1895 г. в Петербурге А. С. Поповым.
Первая передающая радиостанция была построена в СССР в 1920 г., а первые ламповые приемники поступили в продажу в 1924 г.
Массовое производство бытовой радиоэлектронной аппаратуры в нашей стране начинается с 1946 г. В начале 60-х годов начат выпуск портативных радиоприемников. В настоящее время большинство радиоприемников выпускается переносными, с автономным или универсальным питанием.
Под радиоприемными устройствами в стандарте понимаются радиовещательные приемники, тюнеры, магнитолы и другая радиоприемная аппаратура.
Сегодня радиовещательный приемник (РП) может выполняться как законченное самостоятельное устройство, содержащее в одном корпусе радиоприемный тракт, усилитель звуковой частоты (УЗЧ) и акустическую систему (АС), или как составная часть комбинированной бытовой аппаратуры в качестве одного из источников радиовещательных программ; может входить в состав магнитолы, музыкального центра, радиокомплекса, объединяющего набор блочной аппаратуры, позволяющей записывать и воспроизводить различные программы.
Принадлежности радиоэлектронной аппаратуры
Понятие «комплектующие элементы и изделия» является очень широким, так как под него подпадают все элементы и изделия, используемые для получения готового и полностью работоспособного изделия радиоэлектронной аппаратуры (РЭА).
Схемное решение, технические параметры и функцио-п.1 1ЫП. ir возможности РЭА зависят от свойств комплектующих элементов и изделий, основными видами которых являются резисторы, конденсаторы, катушки индуктивности, электровакуумные приборы, полупроводниковые изделия, интегральные микросхемы, электроакустические приборы и др. 1
Ассортимент комплектующих изделий насчитывает несколько тысяч позиций, в полном объеме он представлен только в специализированных магазинах.
Развитие радиоэлектроники, вычислительной техники и техники связи характеризуется усложнением требований и задач, решаемых РЭА.
Число электрорадиоэлементов, входящих в состав РЭА, в течение десятилетия возрастает в 5—10 раз, поэтому очень важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов и их микроминиатюризация.
Элементная база РЭА прошла в своем развитии несколько этапов — от электронных ламп до интегральных микросхем. Интегральные микросхемы (ИМС) представляют собой схему с уже смонтированными элементами, т.е. предприятие-изготовитель ИМС сегодня, используя новые технологические операции (диффузию, вакуумное и катодное напыление, трафаретную печать и др.), выпускает продукцию, которая близка к законченному устройству. Использование ИМС позволило в несколько раз уменьшить размеры и массу аппаратуры, повысить ее надежность, что объясняется тем, что ИМС имеет малые размеры и элементы ее хорошо защищены от внешних воздействий.
Изготовление РЭА на предприятиях радиоэлектронной промышленности сводится к сборке ее из готовых элементов и изделий с использованием соединительных и конструкционных деталей, обеспечивающих необходимое соединение их в единую функциональную схему, защиту от воздействия окружающей среды и поддержку требуемого теплового режима.
Все комплектующие изделия подразделяются на пассивные и активные.
Под пассивными элементами понимаются элементы, не увеличивающие мощность электрического сигнала, а принимающие участие в процессах, связанных с накоплением электрической энергии и ее перераспределением. К таким элементам относятся конденсаторы, резисторы, катушки индуктивности и др.
Конденсаторы. Электрический конденсатор представляет собой конструкцию из двух или нескольких пластин (электродов), изготовленных из токопроводящего материала и разделенных между собой изолирующим материалом (диэлектриком).
Конденсаторы обладают свойством накапливать электрическую энергию и применяются в колебательных контурах для разделения токов различной частоты, сглаживания пульсаций и других целей.
Одним из основных параметров конденсаторов является номинальная емкость «С» — способность конденсатора накапливать электрический заряд — величину, которая обозначается на корпусе конденсатора.
Емкость измеряется в фарадах (Ф). Фарада — очень большая величина емкости, поэтому практически используются дольные единицы: микрофарада (мкФ), нанофарада (нФ) и пикофарада (пФ):
Емкость конденсатора возрастает с увеличением площади обкладок и убывает с увеличением расстояния между ними.
Допускаемое отклонение емкости — максимально допустимая разность между значениями измеренной и номинальной емкости конденсатора, выражается в процентах. Как правило, используют конденсаторы с отклонениями ±5, ±10 и ±20% номинальной емкости.
Номинальное напряжение такое, при котором конденсатор может работать в заданных условиях в течение гарантируемого срока службы без выхода из строя. Конденсаторы выпускают на номинальное напряжение от единиц вольт (В) до десятков киловольт (кВ).
Температурный коэффициент емкости — относительное изменение емкости конденсатора при изменении температуры окружающей среды на 1°С.
Конструкция конденсаторов определяется требованиями к основным параметрам емкости — рабочему напряжению и условиям эксплуатации.
В зависимости от возможности изменения емкости конденсаторы бывают постоянной, переменной емкости и подстроенными. Конденсаторы постоянной емкости имеют конструкцию, не предусматривающую изменение емкости. Емкость конденсаторов переменной емкости в процессе эксплуатации можно изменять в заданных пределах с помощью подвижной системы. Емкость подстроенных конденсаторов изменяется в небольших пределах в процессе настройки аппаратуры, после чего они работают как конденсаторы постоянной емкости.
По виду диэлектрика конденсаторы классифицируют: на воздушные, бумажные, керамические, слюдяные, электролитические и др.; по конструкции: на трубчатые, дисковые, цилиндрические, опрессованные и др.
Цены на постоянные конденсаторы пропорциональны их точности, емкости, номинальному напряжению и совершенству конструкции; на цены переменных конденсаторов в основном влияет конструкция.
Сокращенное обозначение конденсатора состоит из букв и цифр. Первый элемент обозначения — одна или две буквы — указывают на подкласс конденсатора: К — постоянной емкости, КП — переменной емкости, КТ — подстроенной; второй элемент — число — показывает группу конденсатора в зависимости от материала диэлектрика, например, 10 — керамический, 32 — слюдяной, 40 — бумажный, 50 — оксидный; третий элемент — порядковый номер разработки конденсатора, который отделяется от остальных элементов дефисом.
Резисторы. Резисторы имеют широкое применение в радиоэлектронике. С их помощью регулируются и распределяются ток и напряжение в электрических цепях.
Различают два основных вида резисторов: непроволочные (химические) и проволочные. Как одни, так и другие могут быть постоянными и переменными.
Непроволочные резисторы постоянного значения представляют собой керамические цилиндрические тела, на которые наносится тонкий проводящий слой углерода или специальный металлический сплав. С обоих концов цилиндра имеются наконечники для припайки. Весь резистор снаружи покрыт защитным лаком.
Проволочные резисторы представляют собой керамическую трубку, на которую намотан провод. Эти резисторы используются реже, они находят применение в сетях с большими токами.
Важнейшие технические параметры резисторов: номинальное значение сопротивления, допускаемое отклонение сопротивления, номинальная мощность рассеяния, температурный коэффициент сопротивления.
Номинальное сопротивление — электрическое сопротивление, величина которого обозначена на резисторе. Оно измеряется в омах (Ом), килоомах (кОм) и мегаомах (МОм):
Допускаемое отклонение сопротивления — максимально допустимая разность между значениями измеренного и номинального сопротивления резистора. Его выражают в процентах (%).
Номинальная мощность рассеяния — максимальная мощность, которую резистор может рассеивать длительное время в окружающее пространство при непрерывной работе в заданных условиях без выхода из строя. Мощность рассеяния характеризует то количество тепла, которое рассеивает (излучает) резистор не перегреваясь при прохождении по нему тока. Она измеряется в ваттах (Вт).
Температурный коэффициент сопротивления (ТКС) — относительное изменение сопротивления резистора при изменении температуры окружающей среды на 1°С.
Цены на постоянные резисторы пропорциональны их точности, мощности и совершенству конструкции; на цены переменных резисторов влияет в основном конструкция. Увеличение точности номинального значения сопротивления, мощности и улучшение конструкции соответственно увеличивают цену резисторов.
Сокращенное обозначение резисторов состоит из букв и цифр. Первый элемент обозначения — одна или две буквы указывают на подкласс резистора: С — постоянный, СП — переменный; второй элемент — цифра — определяет группу резистора в зависимости от материала токопроводящего слоя, например: 1 — непроволочный тонкослойный углеродистый и бороуглеродистый; 2 — непроволочный тонкослойный металлоокисный; 3 — непроволочный композиционный пленочный и т. д.; третий элемент — порядковый номер разработки резистора, который отделяется от остальных элементов дефисом.
Катушки индуктивности. Катушки индуктивности представляют собой цилиндрический каркас из диэлектрика (полистерола, органического стекла и др.), на который намотан медный провод-обмотка.
По назначению их подразделяют на катушки колебательных контуров, катушки связи, передающие электрические колебания из одной цепи в другую, и дроссели (высоких и низких частот), служащие для пропускания постоянного тока (или тока низкой частоты) и задержки токов высокой частоты.
По конструкции различают однослойные и многослойные катушки. Многослойные катушки, как правило, имеют универсальную обмотку с расположением витков под углом к плоскости вращения катушки и резкими перегибами их у торцов обмотки. Большинство применяемых в РЭА катушек имеют сердечник из магнитных материалов, что позволяет получить необходимые величины параметров при значительно
меньших размерах катушек. Катушки коротковолновых и ультракоротковолновых контуров обычно выполняют в виде однослойной обмотки из сравнительно толстого провода с эмалевым покрытием или посеребренного медного провода с небольшим шагом намотки. Средневолновые и длинноволновые катушки и дроссели высокой частоты имеют универсальную обмотку из медного изолированного провода, а дроссели низкой частоты — универсальную многовитковую обмотку и массивный сердечник из специальной трансформаторной стали.
Основные параметры катушек индуктивности — индуктивность, добротность, собственная емкость.
Индуктивность. Способность катушки индуктивности препятствовать изменению силы тока, протекающего через нее, носит название индуктивности этой катушки. Индуктивность обозначается буквой L, единицей ее измерения является генри (Гн).
Добротность — отношение индуктивного сопротивления катушки к активному (сопротивлению потерь):
Она обусловливается главным образом конструкцией катушки и характеризует электрические потери в металле. Добротность катушки тем выше, чем меньше потери в ее обмотке, каркасе и сердечнике.
Собственная емкость обусловлена емкостью обмотки и в высококачественных катушках индуктивности должна быть как можно меньше, так как она ухудшает качественные показатели катушки (добротность и стабильность). Один из способов уменьшения собственной емкости — перекрестная намотка или намотка отдельных витков не плотно один к другому, а на определенном расстоянии (катушки с принудительным шагом).
Цены на высокочастотные катушки пропорциональны их добротности и стабильности параметров, для низкочастотных
и силовых — пропорциональны массе и качеству материалов, используемых в дросселе или трансформаторе.
Активные элементы в отличие от пассивных, осуществляют преобразование электрического сигнала и увеличивают его мощность. К активным элементам относятся электровакуумные и полупроводниковые приборы, интегральные микросхемы.
К электровакуумным приборам относятся электронные лампы и электронно-лучевые трубки. Работа электровакуумных приборов основана на электронной эмиссии и движении свободных электронов в вакууме внутри баллона прибора.
В современной аппаратуре электронные лампы уже не применяются, так как их заменили полупроводниковые приборы и интегральные микросхемы. Однако так как у населения еще имеется значительное количество аппаратуры (телевизоры, радиолы) прежних выпусков на электронных лампах, их продолжают приобретать взамен вышедших из строя.
Классифицируют электронные лампы в зависимости от количества электродов: лампу, имеющую только катод и анод, называют диодом (нить накала в расчет не принимается); лампу, имеющую наряду с катодом и анодом одну сетку, называют триодом, две сетки — тетродом, три сетки — пентодом, пять сеток — гептодом. Если в один баллон помещены две лампы, то такую лампу называют комбинированной.
Сокращенное обозначение электронных ламп состоит из четырех элементов: первый элемент — цифра — показывает напряжение накала в вольтах округленно. Напряжение накала большинства ламп составляет 6,3 В, поэтому в их маркировке первая цифра 6; второй элемент — буква — обозначает тип лампы, например: Д — диод, X — двойной диод, С — триод, Н — двойной триод; третий элемент — число — указывает порядковый номер разработки данного типа лампы; четвертый элемент — буква — характеризует конструктивное оформление и материал баллона лампы, например: С — стеклянная, П — пальчиковая.
Характерная особенность полупроводников — возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала, но она резко возрастает с ростом температуры, на нее влияют и другие внешние воздействия: свет, сильное электрическое поле и т. п. Для полупроводников также характерна высокая чувствительность электропроводности к содержанию примесей и дефектов в кристаллах. Все эти особенности и определили широкое применение их в технике.
К полупроводникам относится большая группа веществ: германий, кремний и др. Носителями тока в полупроводниках являются электроны проводимости и дырки (носители положительных зарядов). В идеальных кристаллах они появляются всегда парами, так что концентрации обоих носителей равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителя; это полупроводники п- и р-типа, которые представлены на рис.
Полупроводниковые приборы — это приборы, действие которых основано на электронных процессах в полупроводниках. Они служат для генерирования, усиления и преобразования (по роду тока, частоте и т. д.) электричес ких колебаний (полупроводниковый диод, транзистор, тиристор), преобразований сигналов одного вида в другой (оптрон, фоторезистор, фотодиод, фототранзистор и др.), одних видов энергии в другие (термоэлемент, термоэлектрический генератор), а также для преобразования изображений.
Особый класс полупроводниковых приборов — полупроводниковые интегральные микросхемы, представляющие собой законченные электронные устройства в виде единого блока-пластинки из кремния (Si) или германия (Ge), на которой методами полупроводниковой технологии (преимущественно планерной 1 ) образованы зоны, выполняющие функции активных и пассивных элементов (диодов, транзисторов, конденсаторов и т. п.).
Изобретение полупроводниковых приборов относится к 20-м гг. прошлого века, когда сотрудник Нижегородской лаборатории инженер О. В. Лосев создал первые образцы диода и транзистора. Это изобретение было забыто и только в конце 40-х гг. в США появились подобные полупроводниковые приборы. В наше время большинство устройств аппаратуры бытовой электроники выполнены на полупроводниковых приборах из германия, кремния и других материалов. Номенклатура полупроводниковых приборов огромна и содержит около 5000 разновидностей.
Ниже приводится краткое описание нескольких видов полупроводниковых приборов.
Диод — полупроводниковый прибор с двумя выводами, принцип его действия основан на использовании свойств р-п-перехода. Это прибор с односторонней проводимостью. Применяется в электро- и радиоаппаратуре для выпрямления
переменного тока, детектирования, преобразования частоты, переключения электрических цепей.
Цены на диоды определяются рабочей частотой, мощностью и особенностями конструкции.
Транзисторы (триоды) — полупроводниковые приборы с двойным переходом (p-n-p или n-p-n), которые могут работать практически во всех каскадах аппаратов бытовой электроники при малых (несколько мВт), средних (до одного Вт) и больших (свыше единиц Вт) мощностях, на низких, средних, высоких и сверхвысоких частотах.
Цены на триоды определяются рабочей частотой, мощностью, работой в усилительных или генераторных схемах, особенностью конструкции.
Интегральные микросхемы. Использование новых технологий, новых материалов и новых физических эффектов позволило уже в полупроводниковых приборах реализовать функции управляемых сопротивлений для коммутирующих приборов, управляемых емкостей и индуктивнос-тей, что легло в основу создания микросхем — комбинированных устройств, в которых в едином технологическом цикле выполнены соединительные проводники, резисторы, конденсаторы и катушки индуктивности. Новая технология получила название интегральной (от лат. integre — целый, неразрывно связанный), а функциональные узлы аппаратуры, изготовленные по этой технологии, — интегральных микросхем (ИС).
ИС — микроэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки большого числа электронных элементов, как пассивных, так и активных (см. рис.).
Классифицируют ИС по степени интеграции (количеству элементов, содержащихся в ИС), по функциональному назначению, по конструктивно-технологическим признакам и физическому принципу работы.
По количеству элементов, содержащихся в ИС, их подмлдглшпт на пять степеней интеграции: первая степень —
рис. Микросхемы интегральные
до 10 элементов; вторая:— до 10 2 ; третья — до I0 3 ; четвертая — до 10 4 ; пятая — до 10 5 элементов.
Микросхемы, содержащие более 10 2 элементов, принято называть микросхемами повышенного уровня интеграции, а имеющие четвертую-пятую степени интеграции — большими интегральными схемами (БИС). Повышение уровня интеграции является прогрессивным направлением совершенствования ИС, которое помогает существенно улучшить как функциональные, так и эксплуатационные показатели бытовой аппаратуры.
По принципу обработки сигнала ИС подразделяют на цифровые и аналоговые. Цифровые ИС предназначены для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. Их применяют в системах автоматики, связи и др. Аналоговые ИС используют в устройствах, сигналы в которых изменяются по закону непрерывной функции, например для преобразования и усиления сигналов высоких и звуковых частот в радиоприемниках, телевизорах, магнитофонах.
По конструкции и технологии изготовления микросхемы подразделяются на пленочные и монолитные.
Пленочные микросхемы подразделяются в свою очередь на тонкопленочные и толстопленочные. Оба типа пленочных схем изготавливаются путем нанесения пленок специальной резистивной пасты на изолирующую подложку. Они применяются главным образом как резисторные схемы, но могут использоваться также для формирования малогабаритных конденсаторов и катушек индуктивности.
Основными электрическими параметрами ИС являются напряжение питания (U), которое может быть в пределах от 3 до 30 В, потребляемая мощность (Р), т.е. мощность, потребляемая ИС при работе в заданном режиме от источника питания, и частота.
Сокращенное обозначение ИС состоит из следующих элементов: первый элемент — три цифры показывают номер серии, причем первая цифра обозначает конструктивно-технологическое исполнение ИС (например: 1, 5 — полупроводниковые, 2, 4, 8 — гибридные, содержащие как активные, так и пассивные элементы), а вторые две цифры — порядковый номер разработки серии; второй элемент — две буквы отражают функциональное назначение ИС; третий элемент — цифра — указывает порядковый номер одноименных по функциональному признаку ИС в данной серии.
Кроме основных элементов маркировки при необходимости в обозначение перед первым элементом могут быть введены дополнительные буквенные индексы: К — для микросхем, используемых в устройствах широкого применения; КМ — для микросхем широкого применения, выпускаемых в керамическом корпусе. В обозначениях некоторых микросхем встречается четвертый элемент в виде одной из четырех букв: А, Б, В и Г, обозначающих соответствующую модификацию. Например: К122УД1В — микросхема для устройств широкого применения; 1 — полупроводниковая; 22 — номер разработки, серия 122 — усилители; УД — операционный и дифференциальный усилитель; 1-й номер разработки, модификации — В.
Микропроцессоры. Прогресс технологии интегральных схем и появление больших и сверхбольших интегральных микросхем привели к появлению микропроцессоров — больших интегральных микросхем универсального применения, работающих по хранимой в их памяти программе.
Микропроцессоры выпускают в виде одной или нескольких больших интегральных микросхем (БИС). Структурная схема микропроцессора представлена на рис.
Использование микропроцессоров в бытовой радиоэлектронной аппаратуре значительно расширяет ее функциональные возможности и повышает комфортность при ее эксплуатации. Например, микропроцессорный блок управления может включать и выключать аппаратуру по заданной программе в определенное время, осуществлять автоматический поиск нужных каналов в телевизорах, станций в радиоприемниках (с периодическим переключением с канала на канал), со станции на станцию. Он также может производить автоматически регулировку громкости, тембра, яркости, контрастности, фиксировать величины регулируемых параметров в памяти и индицировать их на табл.ли экране.
Индикаторные устройства. Индикаторные устройства предназначены для фиксации различных состояний параметров радиоэлектронной аппаратуры.
Основными типами индикаторных устройств, получившими широкое применение, являются жидкокристаллические индикаторы (ЖКИ) и индикаторы на светоизлучающих диодах (СИД) (см. рис.).
В жидкокристаллических индикаторах используется уникальная взаимосвязь между электрическими и оптичес-
кими характеристиками некоторых жидкостей, которые способны сохранять свою кристаллическую структуру. Оптические свойства этих жидких кристаллов позволяют использовать их в устройствах индикации. Жидкие кристаллы не излучают свет, в отличие от СИД, а лишь изменяют свою рассеивающую способность, поэтому индикаторы этого типа работают при очень малых токах и потребляют очень малую мощность.
Для создания ЖКИ используют нитевидные жидкие кристаллы из смеси органических соединений, молекулы которых могут формировать упорядоченные решетки, подобные кристаллическим.
ЖКИ представляет собой две плоскопараллельные стеклянные пластины, между которыми в малом зазоре находится слой узких кристаллов. На одной из пластин с внутренней стороны прозрачным токопроводящим покрытием нанесен стилизованный рисунок, например цифры 8, составленный из семи элементов. Такие индикаторы могут воспроизводить изображение цифр от 0 до 9 (индикаторы могут воспроизводить и другие символы). На внутреннюю поверхность другой пластины прозрачным токопроводящим покрытием нанесен общий электрод. Выводы от элементов выполнены в виде дорожек из износостойкого проводящего покрытия.
Существуют индикаторы, работающие в отраженном свете (на отражение) и в проходящем свете (на просвет). В первом случае на заднее стекло индикатора наносят отражающий зеркальный слой, а во втором — за индикатором помещают источник света.
Основной параметр ЖКИ, определяющий качество его работы, — это контрастность индицируемого знака (символа) по отношению к фону.
Низкое быстродействие ЖКИ, связанное с инерционностью процесса перестройки структуры жидких кристаллов, и весьма узкий диапазон рабочей температуры ограничивает область их применения. Подавляющее большинство ЖКИ не работает при окружающей температуре ниже + 1°С по причине затвердевания жидкокристаллического вещества. После нагревания индикатора до рабочей температуры его работоспособность восстанавливается.
СИД — оптоэлектронный прибор, в котором используется явление выделения света п-р-переходом под действием тока. Светодиоды изготавливаются из сложных полупроводниковых соединений, например фосфида галлия или арсенида галлия. Свет излучения светодиода определяется материалом полупроводника. Промышленность выпускает светодиоды красного, зеленого и желтого свечения.
Конструктивно светодиоды выполняются в металлическом корпусе с линзой или в прозрачном пластмассовом корпусе. Для изображения букв, цифр и других знаков (символов) несколько светодиодов объединяются в одном корпусе, образуя светодиодную матрицу. Они используются для сигнализации включения аппаратуры, индикации параметров и других целей.
Коммутирующие устройства. К коммутирующим устройствам относятся переключатели, разъемы, соединители и реле. Их основным функциональным элементом являются одна или несколько контактных пар, процесс управления состоянием которых (замкнуто, разомкнуто или нейтрально) производится с помощью механизма в переключателях, ручным путем в
соединителях и электрическим в реле. Главная задача коммутирующих устройств заключается в создании контактных пар с малым переходным сопротивлением, большим числом коммутаций и высокой надежностью. Сложность и разнообразие решаемых при этом задач явились причиной большого разнообразия конструкций.
Цены на коммутирующие устройства в основном определяются количеством контактных пар и используемым в них материалом, количеством коммутируемых направлений, конструкцией и эксплуатационными требованиями.
Бытовые радиотовары классифицируют на две группы: элементы радиоэлектронной техники и бытовая радиоэлектронная техника.
К элементам радиоэлектронной техники относят радиодетали, электровакуумные и полупроводниковые приборы, интегральные схемы, электроакустические приборы, химические источники тока.
Бытовую радиоэлектронную технику подразделяют по назначению на бытовую аудиотехнику и видеотехнику.
К бытовой аудиотехнике относятся радиоприемники, магнитофоны, проигрыватели компакт-дисков (CD), комбинированная аудиотехника и др.
В состав бытовой видеотехники входят телевизоры, видеомагнитофоны и видеоплееры, видеокамеры, видеопроигрыватели, комбинированная видеотехника и др.
Бытовая аудиотехника. Радиоприемники. Радиовещание — это передача звуковых программ для одновременного приема их большим числом слушателей. Оно осуществляется через передающие радиоцентры и принимается радиоприемниками или другой радиоприемной аппаратурой. Радиопередатчик является начальным звеном радиовещания. Он предназначен для преобразования звуковых частот (голос диктора, музыка и т.д.) и последующей передачи их в эфир (окружающее воздушное пространство).
Другим звеном радиопередачи является радиоприемник, который предназначен для приема передаваемых в эфир радиопрограмм и последующего их воспроизведения.
Классификация бытовых радиоприемников. Бытовые радиоприемники классифицируют по условиям эксплуатации, виду источника питания, особенностям звучания.
В зависимости от условий эксплуатации бытовые радиоприемные устройства делят на стационарные и переносные.
По виду источника питания различают радиоприемные устройства с питанием от сети переменного тока и от источников постоянного тока (первичных и вторичных), а также со смешанным питанием (от встроенного низковольтного выпрямительного устройства и от автономных источников постоянного тока).
По особенностям звучания бытовую радиоприемную аппаратуру делят на моно- и стереофоническую.
Основными параметрами бытовых радиоприемников являются чувствительность, избирательность (селективность), диапазоны принимаемых и воспроизводимых частот.
Чувствительность — это способность радиоприемного устройства принимать слабые сигналы радиостанций (маломощных или отдаленных) и обрабатывать их до нормального звучания. Чувствительность измеряется в микровольтах (мкВ) для стационарных радиоприемных устройств, а также в мВ/м — для переносных устройств, имеющих встроенную магнитную антенну.
Избирательность (селективность) — это способность радиоприемного устройства выделять полезные (нужные) сигналы радиостанций из всей массы сигналов, одновременно действующих на антенну. Если радиоприемное устройство обладает низкой избирательностью, то одновременно прослушивается работа нескольких радиостанций, что затрудняет прослушивание нужной передачи.
Избирательность измеряется в логарифмических единицах — децибелах (дБ), которые характеризуют степень ослабления сигналов соседних станций но отношению к полезному сигналу (сигналу принимаемой станции).
Диапазон принимаемых частот (радиоволн) характеризует ту область частот, в пределах которой возможен радиоприем для конкретного вида и модели радиоприемного устройства. Современные радиоприемные устройства могут иметь несколько диапазонов принимаемых частот, в том числе:
коротковолновый диапазон KB (3,95—12,1 МГц, или 75,9-24,8 м);
ультракоротковолновый диапазон 1 и 2: УКВ1 65,8— 74,0 МГц, или 4,56-2,06 м;
Диапазон воспроизводимых частот характеризует полосу (диапазон) звуковых частот, воспроизводимых радиоприемным устройством без искажений. Чем шире этот диапазон, тем естественнее звучание устройства.
Магнитофоны. Запись и воспроизведения звука. Мысль о записи звуковых колебаний и последующего их воспроизведения возникла еще в середине XIX века. Первые приборы для записи звука могли производить запись на носитель информации (грампластинку) только один раз, а воспроизвести запись могли только другие приборы — граммафон или патефон (усовершенствованный граммафон).
Устройства, которые осуществляют магнитную запись и воспроизведение звука называют магнитофонами.
Классификация бытовых магнитофонов. Бытовые магнитофоны классифицируют по способу размещения магнитной ленты и от условий эксплуатации.
По способу размещения магнитной ленты бытовые магнитофоны делят на катушечные и кассетные.
В кассетных магнитофонах магнитная лента наматывается на катушечки рабочем слоем наружу. Скорость движения ленты: основная — 4,76 см/с, дополнительная — 2,38 см/с. Ширина магнитной ленты — 3,81 мм.
В зависимости от условий эксплуатации бытовые магнитофоны делят на стационарные, переносные и носимые (плееры с наушниками).
Основными параметрами бытовых магнитофонов являются отклонение скорости магнитной ленты от номинального значения, коэффициент детонации, рабочий диапазон частот, относительный уровень помех в канале записи и воспроизведения, выходная и потребляемая мощность, масса и габариты.
Отклонение скорости магнитной ленты от номинального значения характеризует на сколько процентов может изменится скорость магнитной ленты в процессе воспроизведения или записи относительно номинальной. Отклонение фактической скорости от номинальной не должно превышать 2%.
Коэффициент детонации характеризует неравномерность скорости движения ленты при записи и воспроизведении. Он рассчитывается как отношение амплитуды колебаний скорости движения ленты к средней скорости. При больших коэффициентах детонации (более ±0,4 %) звук становится ниже или выше естественного. Причина детонации — низкое качество оборудования лентопротяжного механизма.
Относительный уровень помех в канале записи и воспроизведения (шипение и фон) характеризует регламентируемый стандартом, допустимый уровень шумов и помех в канале запись — воспроизведение, при котором может осуществляться достаточно качественное прослушивание фонограмм. Для катушечных магнитофонов — от 52 до 60 дБ, для кассетных от 44 до 50 дБ. Причина фона — пульсация напряжений, питающих усилители магнитофона, а также генератор стирания и подмагничивания.
К дополнительными устройствами, повышающими удобство и комфорт магнитофонов во время эксплуатации, относят раздельную индикацию уровня записи по каналам с возможностью синхронного регулирования, индикацию уровня воспроизведения, возможность временного останова ленты, автоматический останов при окончании ленты, контроль (счетчик) расхода ленты, систему шумопонижения (для кассетных магнитофонов), возможность подключения телефонов и др.
Компакт-диск представляет собой прозрачный пластмассовый диск, на котором находятся дорожки в виде спирали. На эти дорожки наносится светоотражающее покрытие.
Считывателем информации с компакт-диска является лазерный луч, который в процессе воспроизведения скользит по поверхности дорожек. При этом не происходит механического контакта с поверхностью компакт-диска. Таким образом качество записанной информации практически не зависит от количества воспроизведения (прослушивания) компакт-диска.
Классификация ПКД. ПКД классифицируют в зависимости от условий/эксплуатации на стационарные (входящие в состав музыкальных центров и Hi-Fi, Hi-End аппаратуры), переносные (входят в состав магнитол), носимые (аудиоплееры CD).
Основными параметрами ПКД являются рабочий диапазон частот, относительный уровень шумов и помех, выходной и потребляемой мощностями, массой и габаритами.
Относительный уровень помех (шипение и фон) характеризует регламентируемое стандартом, допустимый уровень шумов и помех в канале воспроизведение, при котором может осуществляться достаточно качественное прослушивание фонограмм. Для ПКД входящих в состав музыкальных центров — от 94 до 110 дБ.







