Бывают случаи что мода равна медиане

25. Мода и медиана

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значи–тельной части совокупности, и определяется по фор–муле:

Бывают случаи что мода равна медиане

где х 0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

fm-1 – частота предшествующего интервала;

fm+1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц со–вокупности. При этом у одной половины единиц сово–купности значение варьирующего признака меньше ме–дианы, у другой – больше.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми облада–ет половина единиц совокупности.

При определении медианы в интервальных ва–риационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех ча–стот ряда. Расчет медианы интервального ва–риационного ряда производится по формуле:

Бывают случаи что мода равна медиане

где х 0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

f – число членов ряда;

?m- 1 – сумма накопленных членов ряда, предше–ствующих данному.

Наряду с медианой для более полной характери–стики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжи–рованном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а деци-ли – на десять равных частей. Квартилей насчитыва–ется три, а децилей – девять.

Медиана и мода в отличие от средней арифмети–ческой не погашают индивидуальных различий в зна–чениях варьирующего признака и поэтому являются дополнительными и очень важными характеристика–ми статистической совокупности. На практике они ча–сто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содер–жит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

МОДА НА ИНВЕСТИЦИИ

31. Структурные средние величины. Мода и медиана

31. Структурные средние величины. Мода и медиана Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.Мода (Мо) – чаще всего встречающийся вариант.Модой называется

3. Структурные средние величины. Мода и медиана

3. Структурные средние величины. Мода и медиана Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.Мода (Мо ) – чаще всего встречающийся вариант. Модой называется

Мотоциклы, высокая мода и карнавал

Мотоциклы, высокая мода и карнавал Шоу Кренза 1997 года превратило освященный белыми рамами Гуггенхейм в место стоянки сотен блестящих, новеньких мотоциклов, которые представляли собой «новаторские стили» столетия[91]. Классические художественные школы были возмущены; они

18.4.5.2. Медиана репутации

18.4.5.2. Медиана репутации Как обсуждалось в предыдущем разделе, репутация, измеренная через среднее арифметическое (или соответствующие суммы) оценок, может быть хорошим показателем репутации. Тем не менее он все еще далек от преодоления уклона репутации, производимого

Основная мода России

Основная мода России Если вам кажется, что ситуация улучшается, значит, вы чего-то не заметили.Со страной нужно находиться в резонансе, так чтобы «быть в струе», чтобы окружающее пространство не сопротивлялась вам, а помогало, чтобы продвижение вперед происходило бы

Источник

Мода и медиана

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле:

Бывают случаи что мода равна медиане

где х 0 нижняя граница интервала;

h – величина интервала;

f m частота интервала;

f m-1 частота предшествующего интервала;

f m+1 частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

Бывают случаи что мода равна медиане

где х 0 нижняя граница интервала;

h – величина интервала;

f m частота интервала;

f – число членов ряда;

S m-1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.

Источник

Медиана в статистике: понятие, свойства и расчет

Среднее значение

Часто так называют среднеарифметическое значение выборки (или множества чисел). Это, пожалуй, самый распространенный термин, из вышеперечисленных трех. Хотя бы потому, что почти каждый день мы слышим это слово в СМИ. Значение его тоже объясняет само название. Тем не менее, для тех, кому непонятен смысл этого слова, объясним “на пальцах”.

Это сумма данных чисел, деленное на количество. Если написать в виде формулы, это выглядит так.

Пример из практики

Медиана

Медиана – число, характеризующее выборку, т.е. если взять все элементы множества, то это число ровно делит множество пополам. Одна половина множества равна или больше этого число, а другая меньше или равна этому числу.

Пример из практики

Значит, среднее значение в год составляет

$(1,000,000 + 200,000 + 8,900) : 100 = 1,208,900 : 100 = 12,089$ у.е.

Зная соотношение неработающих людей, на каждого работающего, и поделив полученное на это число, получим доход на душу населения (с учетом детей, стариков и больных без пенсии).

Итак, такая статистика показывает, что народ живет припеваючи, зарабатывая примерно 1,000 у.е. в месяц, а действительность другая. Как раз, так и вычисляется доход на душу населения. Берется национальный доход и делится на численность населения. Теперь вы понимаете, почему в сводках всегда называют эту цифру, потому что она никоим образом не отображает благосостояние большинства, а только является показателем экономического благосостояния страны.

Пример из практики

Если постоять на проспекте и в течение 10 минут и посчитать все проезжающие автомобили и классифицировать их по цветам, то можно определить моду для цвета автомобилей этого города. Допустим, насчитали 95 белых, 45 черных, 12 красных, 38 серых и 70 других цветов. Значит, модой в этом городе являются автомобили белого цвета. Это хорошая информация для дистрибьюторов автомобилей.

Подробнее о среднем значении

Иногда вычисляют среднее значение для группы данных. Тогда значения разбивают на группы и вычисляют серединную точку каждой группы. Затем эти значения умножают на количество членов каждой группы (на частотность) и складывают. А результат делят на общее количество. Такое значение называют средним значением группы. Посмотрите на этот пример:

ГруппаЧастотаСередина
1-20510.5
21-402530.5
41-603750.5
61-802370.5

Умножаем эти значения на частоты и складываем, затем делим на общее количество:

Как уже показали на примере с доходом населения, экстремумы сильно влияют на среднеарифметическое значение, поэтому иногда полезно их отбрасывать. Тогда среднее значение называется урезанным средним.

В симметричном распределении (типа нормального распределения ) среднее значение, медиана и мода равны или близки друг другу. В асимметричном же, они отличаются, и число, на которое отличаются эти показатели, дают информацию о “скошенности” распределения относительно нормального.

Надеемся, что нам удалось “на пальцах” объяснить значение терминов среднеарифметическое значение, медиана и мода.

Связанные понятия

Упоминания в литературе

Формула медианы

Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

Бывают случаи что мода равна медиане

Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана обозначается, как

Бывают случаи что мода равна медиане

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

Бывают случаи что мода равна медиане

В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.

Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Обратимся к наглядной схеме.

Бывают случаи что мода равна медиане

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

Бывают случаи что мода равна медиане

где xMe — нижняя граница медианного интервала;

iMe — ширина медианного интервала;

∑f/2 — количество всех значений, деленное на 2 (два);

S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

fMe — число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.

Для примера рассчитаем медиану по следующим данным.

Бывают случаи что мода равна медиане

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.

Бывают случаи что мода равна медиане

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

Бывают случаи что мода равна медиане

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.

Определение моды и медианы по несгруппированным данным

N п/п1234505199100
Доход, долл.10010410410716216410050 000

Если воспользоваться средней арифметической, то получим средний доход, равный примерно 600 – 700 долларов, который имеет мало общего с доходами основной части группы. Медиана же, равная в данном случае Me = 163 доллара, позволит дать объективную характеристику уровня доходов 99 % данной группы людей.
Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).
Предположим, распределение рабочих всего предприятия в целом по тарифному разряду имеет следующий вид (табл. 2).
Таблица 2 – Распределение рабочих предприятия по тарифному разряду

Тарифный разрядЧисленность рабочих, человек
212
348
456
560
614
ВСЕГО190

Определение моды по дискретному вариационному ряду

Определение моды и медианы графическим методом

Моду и медиану в интервальном ряду можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Из точки их пересечения опускаем перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 3).
Бывают случаи что мода равна медиане
Рис. 3. Графическое определение моды по гистограмме.
Бывают случаи что мода равна медиане
Рис. 3. Графическое определение моды по гистограмме.

Рис. 4. Графическое определение медианы по кумуляте
Для определения медианы из точки на шкале накопленных частот (частостей), соответствующей 50 %, проводится прямая, параллельная оси абсцисс до пересечения с кумулятой. Затем из точки пересечения опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Неуникальность значения

Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке <1, 2, 3, 4>медианой, по определению, может служить любое число из интервала (2,3)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений.

Как найти медиану чисел

Лучше рассмотреть процесс вычисления медианы на примере. Пусть у нас есть ряд чисел: 13 19 24 17 15 11. Для удобства числа будет записывать через пробел. Найдем его медиану. Для начала необходимо расположить числа в порядке возрастания. Эта процедура называется сортировкой. Получим новый ряд: 11 13 15 17 19 24. Так как количество чисел в ряду равно 6, а число 6 четное, то середина ряда будет между числами 15 и 17. Найдем среднее этих двух чисел: (15 + 17) / 2 = 16. Это и будет медианой ряда. Не стоит путать медиану, среднее гармоническое и среднее арифметическое — это принципиально разные понятия.

Рассмотрим другой пример, когда количество чисел в ряду нечетное. Есть такой ряд: 18 46 10 5 38. Найдем медиану набора этих чисел. Отсортируем ряд по возрастанию и получим ряд: 5 10 18 38 48. Так как количество чисел в этом ряду 5, то у него есть середина — это элемент с номером 2. Значит медиана этого ряда равна элементу с номером 2. Получаем ответ 18.

И еще пример — найдем медиану чисел 158 166 134 130 132. Отсортируем и получим ряд 130 132 134 158 166. Количество чисел нечетное и равно 5, значит средний элемент имеет номер 3. Третий элемент нашего отсортированного ряда — число 134. Это и есть медиана.

Область применения медианы

При вычислении типичного признака неоднородных рядов, имеющих «выбросы» – значения во много раз отличающиеся от других значений ряда.

Пример использования

Предположим, что в одной комнате оказалось 19 бедняков и один миллионер. У каждого бедняка есть 5 ₽, а у миллионера — 1 млн ₽ (10 6 ). В сумме получается 1 000 095 ₽. Если мы разделим деньги равными долями на 20 человек, то получим 50 004,75 ₽. Это будет среднее арифметическое значение суммы денег, которая была у всех 20 человек в этой комнате.

Медиана в этом случае будет равна 5 ₽ (полусумма десятого и одиннадцатого, срединных значений ранжированного ряда). Можно интерпретировать это следующим образом. Разделив всю компанию на две равные группы по 10 человек, мы можем утверждать, что в первой группе у каждого не больше 5 ₽, во второй же — не меньше 5 ₽. В общем случае можно сказать, что медиана — это то, сколько принёс с собой «средний» человек. Наоборот, среднее арифметическое — неподходящая характеристика, так как оно значительно превышает сумму наличных, имеющуюся у среднего человека.

Неуникальность значения

Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке <1, 3, 5, 7>медианой может служить любое число из интервала (3,5)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений (в примере выше это число (3+5)/2=4). Для выборок с чётным числом элементов можно также ввести понятие «нижней медианы» (элемент с номером n/2 в упорядоченном ряду из элементов; в примере выше это число 3) и «верхней медианы» (элемент с номером (n+2)/2; в примере выше это число 5). Эти понятия определены не только для числовых данных, но и для любой порядковой шкалы.

Советы

Вам будет легче найти моду и медиану, если вы запишете числа в порядке возрастания.

Источник

Среднее арифметическое, мода и медиана

Предмет, цели и методы математической статистики

Начиная с XVIII века, в общем направлении статистических исследований начинает активно формироваться математическая статистика.

Математическая статистика – раздел математики, разрабатывающий методы регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений.

В зависимости от предмета исследований математическая статистика делится на:

В зависимости от цели и методов исследований математическая статистика делится на: описательную статистику; теорию оценивания; теорию проверки гипотез.

1. Наглядное представление в форме графиков и таблиц.

2. Количественное описание с помощью статистических показателей.

1. Параметрические методы (наименьших квадратов, максимального правдоподобия и др.).

2. Непараметрические методы.

1. Последовательный анализ.

2. Статистические критерии.

Метод выборочных исследований

Статистика получила признание в различных областях человеческой деятельности благодаря заметной экономии времени и прочих ресурсов. Её основная идея: не нужно измерять всё, измерьте только часть всего и сделайте предположение об остальном.

«Всё» в статистике называется генеральной совокупностью.

«Часть всего», которую мы тщательно исследуем, называется выборкой.

Метод выборочных исследований – способ определения свойств группы объектов ( генеральной совокупности ) на основании статистического исследования её части ( выборки ).

Например, чтобы оценить средние размеры апельсина, который продаётся в магазине в декабре, необязательно денно и нощно мерить все апельсины во всех ящиках (сколько же для этого нужно времени и людей?!). Достаточно сделать выборку – мерить по одному апельсину из каждого ящика в течение месяца (тут уже и один человек справится).

Статистика предоставляет методику и оценки для того, чтобы правильно провести выборку и на основании знаний о среднем размере апельсина в выборке (выборочной средней) судить о средних размерах всех декабрьских апельсин (генеральной средней).

Средняя арифметическая, простая и взвешенная

Статистическое исследование опирается на собранные данные о каком-то признаке (рост, вес, возраст, доход и т.п.).

Варианта – полученное эмпирическое значение признака.

Вариационный ряд – совокупность собранных вариант.

Пусть мы сделали выборку, провели N измерений и получили x_1,x_2,…,x_N вариант.

Чтобы найти выборочную среднюю дискретного вариационного ряда, нужно вычислить среднюю арифметическую простую :

На протяжении четверти школьник получил такие оценки по алгебре: 5,4,3,5,4,4,5,4,3,5,5,4,3,5,4,4. Найдите среднюю оценку за четверть.

Считаем среднюю арифметическую простую:

Нетрудно заметить, что оценки повторяются, и вычисления можно упростить, если вместо сложения одинаковых оценок использовать умножение оценок на их количество.

Чтобы найти выборочную среднюю при повторяющихся вариантах, удобно вычислять среднюю арифметическую взвешенную:

Рассматриваем тот же ряд оценок: 5,4,3,5,4,4,5,4,3,5,5,4,3,5,4,4 и составляем таблицу:

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Описательная статистикаТеория оцениванияТеория проверки гипотез
ЦельОбработка и систематизация эмпирических данныхОценивание ненаблюдаемых данных и сигналов от объектов наблюдения на основе наблюдаемых данныхОбоснование предположений о виде распределения и свойствах случайной величины
Методы