дефект масс в чем измеряется
Энергия связи. Дефект масс
Урок 49. Физика 9 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Энергия связи. Дефект масс»
В ядре существуют силы особой природы — ядерные силы, которые действуют между нуклонами на расстояниях, сравнимыми с размерами самих ядер, и препятствуют взаимному электростатическому отталкиванию между протонами в ядре.
Таким образом, чтобы расщепить ядро на отдельные нуклоны, не взаимодействующие между собой, необходимо совершить работу по преодолению ядерных сил. Другими словами, сообщить ядру определённую энергию.
Так вот, минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны, называется энергией связи.
Очевидно, что чем больше эта величина, тем стабильнее ядро.
— А каким образом можно определить величину энергии связи?
Самый простой способ определения этой энергии основан на одном замечательном законе природы, устанавливающим соотношение между массой тел и их энергией. Закон этот был открытым знаменитым учёным Альбертом Эйнштейном в 1905 году:
То есть, согласно этому закону, изменение массы тела влечёт за собой изменение энергии этого тела.
Из записанного соотношения видно, что ничтожному изменению массы тела соответствует значительное изменение энергии. Для примера подсчитаем, какое количество энергии выделится при уменьшении массы какого-нибудь тела на один грамм?
— А какое отношение имеет рассмотренный нами закон к подсчёту энергии связи атомных ядер?
Всё очень просто. Дело в том, что при образовании ядер из протонов и нейтронов освобождается энергия электромагнитного излучения, то есть излучаются фотоны, а энергия ядерной системы уменьшается. Следовательно, это явление должно вести за собой уменьшение массы, так как фотоны уносят с собой некоторую её часть. Значит масса получившегося ядра должна быть меньше суммы масс, входящих в него нуклонов. Эту разность масс называют дефектом массы ядра.
Иными словами, дефект масс — это разность между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра.
В соответствии с соотношением Эйнштейна между массой и энергией, дефект массы и характеризует энергию связи атомного ядра.
Обращаем ваше внимание на то, что при использовании данной формулы, массу входящих в неё частиц следует выражать в килограммах. Тогда значение полученной энергии связи будет выражено в джоулях.
Для примера, давайте рассчитаем энергию связи ядра изотопа лития-семь, если известна масса его ядра.
Как видим, энергии микромира крайне малы и работать с такими числами представляется крайне неудобным. Гораздо проще рассчитывать энергию связи в электронвольтах и мегаэлектронвольтах (эВ и МэВ).
Один электронвольт равен энергии, необходимой для переноса элементарного заряда в электростатическом поле между точками с разницей потенциалов в один вольт.
Иначе говоря, величина одного электронвольта равна значению элементарного заряда в джоулях:
Но энергии связи таковы, что для их вычисления удобно использовать миллионы электронвольт, то есть мегаэлектронвольты (МэВ).
В этом случае формула для определения энергии связи примет вид:
Теперь обратим внимание на тот факт, что в таблице Менделеева и в таблицах масс изотопов приводятся, как правило, не массы ядер, а массы нейтральных атомов. Поэтому формулу для дефекта масс целесообразно преобразовать так, чтобы в неё входила не масса ядра, а масса соответствующего атома.
Ещё одной важной характеристикой в ядерной физике является удельная энергия связи. Так называют энергию связи, приходящуюся на один нуклон.
Чем она больше, тем стабильнее оказывается ядро изотопа. Как правило, лёгкие ядра обладают достаточно малой удельной энергией связи (за исключением гелия два-четыре).
К середине таблицы Менделеева энергия связи достигает своего максимального значения, а к концу — вновь начинает убывать. Поэтому наиболее устойчивы ядра со средними значениями массовых чисел. Лёгкие ядра имеют тенденцию к слиянию (реакция синтеза), а тяжёлые — к распаду (реакция деления). Энергию, выделяющуюся или поглощающуюся в процессе таких ядерных реакций, можно определить, если известны массы взаимодействующих и образующихся в результате этого взаимодействия ядер и частиц. Эту энергию называют энергетическим выходом ядерной реакции.
Следует обратить внимание и на то, что синтез лёгких ядер сопровождается примерно в 6 раз большим выделением энергии на один нуклон по сравнению с делением тяжёлых ядер. Но подобные реакции могут протекать только при очень высоких температурах. Поэтому их называют термоядерными. Но о них мы с вами поговорим в ближайшее время.
Дефект масс в чем измеряется
Ядра атомов представляют собой сильно связанные системы из большого числа нуклонов.
Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А.
Энергией связи называют энергию, равную работе, которую надо совершить, чтобы расщепить ядро на свободные нуклоны.
По закону сохранения энергия связи одновременно равна энергии, которая выделяется при образовании ядра из отдельных свободных нуклонов.
Удельная энергия связи
— это энергия связи, приходящаяся на один нуклон.
Если не считать самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Максимальную удельную энергию связи (8,6МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60. Ядра этих элементов наиболее устойчивы.
По мере перегрузки ядер нейтронами удельная энергия связи убывает.
Для элементов в конце таблицы Менделеева она равна 7,6 МэВ/нуклон (например для урана).
Выделение энергии в результате расщепления или синтеза ядра
Для того, чтобы расщепить ядро надо затратить определенную энергию для преодоления ядерных сил.
Для того, чтобы синтезировать ядро из отдельных частиц надо преодолеть кулоновские силы отталкивания (для этого надо затратить энергию, чтобы разогнать эти частицы до больших скоростей).
То есть, чтобы провести расщепление ядра или синтез ядра надо затратить какую-то энергию.
При синтезе ядра на малых расстояниях на нуклоны начинают действовать ядерные силы, которые побуждают их двигаться с ускорением.
Ускоренные нуклоны излучают гамма-кванты, которые и обладают энергией, равной энергии связи.
На выходе реакции расщепления ядра или синтеза энергия выделяется.
Есть смысл проводить расщепление ядра или синтез ядра, если получаемая, т.е. выделенная энергия в результате расщепления или синтеза, будет больше, чем затраченная.
Согласно графику, выйгрыш в энергии можно получить или при делении (расщеплении) тяжелых ядер, или при при слиянии легких ядер, что и делается на практике.
Измерения масс ядер показывают, что масса ядра (Мя) всегда меньше суммы масс покоя слагающих его свободных нейтронов и протонов.
При делении ядра: масса ядра всегда меньше суммы масс покоя образовавшихся свободных частиц.
При синтезе ядра: масса образовавшегося ядра всегда меньше суммы масс покоя свободных частиц, его образовавших.
Дефект масс является мерой энергии связи атомного ядра.
Дефект масс равен разности между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра:
где Мя – масса ядра ( из справочника)
Z – число протонов в ядре
mp – масса покоя свободного протона (из справочника)
N – число нейтронов в ядре
mn – масса покоя свободного нейтрона (из справочника)
Уменьшение массы при образовании ядра означает, что при этом уменьшается энергия системы нуклонов.
Расчет энергии связи ядра
Энергия связи ядра численно равна работе, которую нужно затратить для расщепления ядра на отдельные нуклоны, или энергии, выделяющейся при синтезе ядер из нуклонов.
Мерой энергии связи ядра является дефект массы.
Здесь энергия связи ядра выражена произведением дефекта масс на квадрат скорости света.
В ядерной физике массу частиц выражают в атомных единицах массы (а.е.м.)
Энергию связи можно рассчитать в Джоулях, подставляя в расчетную формулу массу в килограммах.
в ядерной физике принято выражать энергию в электронвольтах (эВ):
Просчитаем соответствие 1 а.е.м. электронвольтам:
Теперь расчетная формула энергии связи (в электронвольтах) будет выглядеть так:
ПРИМЕР РАСЧЕТА энергии связи ядра атома гелия (Не)
Считаем энергию связи ядра в электронвольтах (дефект масс в а.е.м.) по преобразованной формуле
1. Расчет дефекта масс
В ядре атома гелия содержится 2 протона и 2 нейтрона, значение массы ядра гелия и масс покоя протона и нейтрона берем из справочника.

Удельная энергия связи ядра атома гелия:
где 4 соответствует числу нуклонов в ядре атома гелия.
Дефект масс в чем измеряется
Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие– притяжение, обеспечивающее устойчивость ядер несмотря на отталкивание одноименно заряженных протонов.
· Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.
· Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии.
Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая энергия, которую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.
При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв – величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса
называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов.
Если ядро массой Мяд образовано из Z протонов с массой mp и из (A – Z) нейтронов с массой mn, то:
Вместо массы ядра Мяд величину ∆m можно выразить через атомную массу Мат:
где mН – масса водородного атома. При практическом вычислении ∆m массы всех частиц и атомов выражаются в атомных единицах массы (а.е.м.). Одной атомной единице массы соответствует атомная единица энергии (a.e.э.): 1 а.е.э. = 931,5016 МэВ.
Дефект массы служит мерой энергии связи ядра:
Удельной энергией связи ядраωсв называется энергия связи, приходящаяся на один нуклон:
Величина ωсв составляет в среднем 8 МэВ/нуклон. На рис. 9.2 приведена кривая зависимости удельной энергии связи от массового числа A, характеризующая различную прочность связей нуклонов в ядрах разных химических элементов. Ядра элементов в средней части периодической системы ( 


В этих ядрах ωсв близка к 8,7 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает. Ядра атомов химических элементов, расположенных в конце периодической системы (например ядро урана), имеют ωсв ≈ 7,6 МэВ/нуклон. Это объясняет возможность выделения энергии при делении тяжелых ядер. В области малых массовых чисел имеются острые «пики» удельной энергии связи. Максимумы характерны для ядер с четными числами протонов и нейтронов ( 





Если ядро имеет наименьшую возможную энергию 


Данные об энергии связи ядер и использование капельной модели ядра позволили установить некоторые закономерности строения атомных ядер.
Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров ( 
При малых и средних значениях А числа нейтронов и протонов в устойчивых ядрах примерно одинаковы: Z ≈ А – Z.
С ростом Z силы кулоновского отталкивания протонов растут пропорционально Z·(Z – 1)
Z 2 (парное взаимодействие протонов), и для компенсации этого отталкивания ядерным притяжением число нейтронов должно возрастать быстрее числа протонов.
Для просмотра демонстраций щелкните по соответствующей гиперссылке:
Деление ядер. Радиоактивность. Атомная электростанция.
Дефект масс в чем измеряется
Войти
Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal
Дефект массы ядра. Возникновение дефекта массы, энергии связи, ядерных сил. Солненые нейтрино.
5.1. Согласно существующей на сегодняшний день нуклонной модели, атомное ядро состоит из протонов и нейтронов, которые удерживаются внутри ядра ядерными силами.
5.3. Однако в недрах звезд при бета-перестройке протонов в нейтроны используется собственная материя оболочки протона, в результате чего все образовавшиеся нейтроны изначально имеют дефект массы. В связи с этим, при каждом удобном случае «дефектный» нейтрон стремится любыми способами восстановить эталонную массу своей оболочки и превратиться в «полноценную» частицу. И это стремление нейтрона восстановить свои параметры (компенсировать недостачу) является вполне понятным, обоснованным и «законным». Поэтому при малейшей возможности «дефектный» нейтрон просто «присасывается» (впивается, приклеивается и т.д.) к оболочке ближайшего протона.
5.4. Следовательно: энергия связи и ядерные силы по своей сути являются эквивалентом силы, с которой нейтрон стремится «отобрать» у протона недостающую долю своей оболочки. Механизм данного явления пока не очень понятен и не может быть представлен в рамках данной работы. Однако можно предположить, что нейтрон своей «дефектной» оболочкой частично переплетается с неповрежденной (и более прочной) оболочкой протона.
Часть 6. Парные связи между нуклонами.
6.1. Цитата: «Принято, что Ядерные силы являются проявлением сильного взаимодействия и обладают следующими свойствами:
а) ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, нейтроном и нейтроном, протоном и нейтроном;
б) ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные силы, в природе не наблюдается;
Однако, учитывая изложенные принципы появления дефекта массы у нейтрона, по пункту а) сразу же возникают возражения, и он требуют более детального рассмотрения.
Во-первых: нет никакой «технологической» необходимости в ее образовании, поскольку для образования дейтрона и ядер других химических элементов вполне достаточно дефекта массы только у нейтронов;
6.3.Всвязи с вышеизложенным напрашиваются следующие простые выводы:
а) ядерные силы могут действовать только между протоном и «дефектным» нейтроном, поскольку они имеют оболочки с разным распределением зарядов и разной прочности (у протона оболочка прочнее);
а) протоны имеют заряд и, следовательно, кулоновские силы отталкивания. Поэтому единственным предназначением нейтрона является его способность (умение) создавать дефект массы и своей энергией связи (ядерными силами) «склеивать» обладающие зарядом протоны и формировать вместе с ними ядра химических элементов;
б) энергия связи может действовать только между протоном и нейтроном, и не может действовать между протоном-протоном и нейтроном-нейтроном;
7.1. Цитата: «Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами. Взаимодействие нуклонов сводится к многократным актам испускания мезона одним из нуклонов и поглощения его другим. Наиболее отчётливое проявление обменных мезонных токов обнаружено в реакции расщепления дейтрона электронами высоких энергий и g-квантами».(Атомное ядро. Википедия, БСЭ и др.).
Мнение о том, что ядерные силы «. возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами. » требует уточнения по следующим причинам:
7.2. Появление мезонных токов при разрушении дейтрона (или других частиц) ни при каких обстоятельствах не может считаться достоверным фактом постоянного наличия этих частиц (мезонов) в реальности, поскольку:
б) эти осколки являются лишь промежуточными продуктами распада с чисто символическим временем жизни («временными жителями») и поэтому не могут рассматриваться как постоянные и реально существующие структурные компоненты более стабильных образований (элементов таблицы Менделеева и составляющих их протонов и нейтронов).
Часть 8. Солнечные нейтрино.
8.1. В настоящее время при подсчете количества солнечных нейтрино, в соответствии с формулой p + p = D + е + + v e + 0,42 МэВ, исходят из того, что их энергия лежит в диапазоне от 0 до 0,42 МэВ. Однако при этом не учитываются следующие нюансы:
8.1.1. Во—первых. Как указывалось в пункте 4.3 значения энергии (+0,68МэВ) и (-0,26МэВ) нельзя суммировать, поскольку это абсолютно разные виды (сорта) энергии, которые выделяются/потребляются на разных стадиях процесса (в разные промежутки времени). Энергия (0,68МэВ) выделяется на начальной стадии процесса образования дейтрона и незамедлительно распределяется между позитроном и нейтрино в произвольных пропорциях. Следовательно, расчетные значения энергии солнечных нейтрино находятся в диапазоне от 0 до 0,68 МэВ.
а) распределение выделившейся при бета-перестройке энергии между позитроном и нейтрино зависит не только от пространственного расположения появившейся электрон-позитронной пары внутри кварка и расположения кварков внутри протона, но и от наличия внешних сил, которые противодействуют выходу позитрона;
б) для преодоления внешних кулоновских полей наибольшая часть из выделившейся при бета-перестройке энергии (из 0,68МэВ) будет передаваться позитрону. В этом случае средняя энергия подавляющего количества нейтрино будет в несколько раз (или даже в несколько десятков раз) меньше средней энергии позитрона;
в) принимаемая в настоящее время за основу для расчетов количества солнечных нейтрино величина их энергии в размере 0,42 МэВ не соответствует действительности.



























