динамометрический ключ в чем измеряется момент затяжки
Инструмент в гараже. Динамометрический ключ.
Небольшое лирическое отступление. В нашем блоге я буду выкладывать отзывы и информацию об используемых нами инструментах, полезных фичах при ремонте, а также тестах и экспериментах, которые мы иногда проводим.
Сегодня мы начнем со святого Грааля любого уважающего себя продвинутого автолюбителя — динамометрическом ключе. Собственно — зачем вам динамометрический ключ? Самый стандартный вариант использования — закручивание колесных гаек/болтов. Конечно, вы можете закрутить их вручную, но вряд ли вы сможете руками поймать нужный момент. И уж точно не стоит закручивать гайки пневматическим или электрическим гайковертом.
Поэтому при смене колес вам нужен динамометрический ключ и знание момента силы затяжки для гаек/болтов ваших колес. Сейчас, когда все переходят на зимнюю резину — это особенно актуально. Конечно, если вы меняете колеса на шиномонтаже — подобный ключ вам вряд ли пригодится. Кстати, если на шиномонтаже колесные гайки/болты затягивают гайковертом или просто от руки — это хреновый шиномонтаж. К тому же через 100-150 км пробега затяжку надо проверить, на всякий случай.
Машин у нас в гараже много, поэтому для смены колес нам необходим динамометрический ключ. Выбор пал на компанию Force, ибо их инструментом пользуемся давно. В итоге приобрели Force 6474470 (по классификации — предельный динамометрический ключ). Весьма удобный ключ, диапазон затяжки 42-210 Нм. В целом это основной диапазон для затяжки колес. Если вы хотите выбрать другой ключ — обязательно обратите внимание на то, что он должен быть откалиброван на заводе.
Максимальный момент затяжки болтов динамометрическим ключом.
Всем привет любителям ремонта легкового автотранспорта. Искал на форуме информацию по Динамометрическим ключам, сервисному обслуживанию, ремонту динамометрических ключей, калибровку динамометрических ключей и конечно же правильность использования Динамометрических ключей во время работы ими. Поэтому решил создать блог по ремонту и сервисному обслуживанию динамометрических ключей всех крупных производителей которые присутствуют на нашем рынке в России, и конечно же пользуются автолюбители в гаражах. Но для начала необходимо понять, что такое крутящий момент, какими единицами СИ он измеряется? Что происходит с болтом во время затягивания? Сейчас попробуем разобраться во всём по порядку.
1.Что такое крутящий момент?
Дадим определение крутящему моменту – это приложенная физическая величина (усилие), равная произведению модуля силы, приложенной к рычагу, на расстоянии от точки приложения силы до оси вращения рычага.
Рассмотрим рис.1 выше. Предположим, что мы затягиваем болт, используя головку на 19 мм присоединённую к рычагу, длинной 1 метр. При этом перпендикулярно стержню прикладывается усилие равное 100Нм, то на оси болта образуется крутящий момент в 100 Нм.
В международной системе СИ сила выражается в Ньютонах (Н), а не в кгс. Хотя на динамометрических ключах в зависимости от производителя. Пишут две шкалы.
Одна шкала идёт в Международной системе СИ, а вторая в местной системе измерений. Для примера могут быть фунты. Ниже приведена таблица для перевода крутящего момента с разных единиц измерений в единицы СИ.
Теперь необходимо разобрать с каким максимальным моментом можно затягивать болты, шпильки, гайки. Если взять болт в руки на нём будут стоять цифры 3,6: 4,6: 5,6: 5,8: 6,8: 8,8: 9,8: 10,9: 12,9
Предел текучести – это такое значение нагрузки, при превышении которой в материале начинаются не подлежащие восстановлению деформации. При расчете нагрузок, которые будут воздействовать на резьбовой крепеж, закладывается двух — или даже трехкратный запас от предела текучести.
Выше в таблице приведены примеры всех болтов по классу прочности и на какой максимальный момент можно затягивать работая динамометрическим ключом.
Надеюсь данная статья поможет работать правильно Динамометрическими ключами и затягивать болты с правильным моментом. Всем удачи в ремонтах автотранспорта.
Как выбрать динамометрический ключ?
Безопасность – вот что мы больше всего ценим в жизни. Ездить на автомобиле и не боятся, что слетит гайка в механизме, работать со станком и быть уверенным, что все узлы функционируют как часы. Понятно, что надежность любой конструкции зависит от крепления каждой детали – все резьбовые соединения должны быть затянуты с определенным и, главное – одинаковым усилием.
Содержание:

Как же достичь высокой точности закрепления каждого болта, винта и гайки? Трудно ориентироваться на усилие, с которым рабочий фиксирует гайки. Во-первых, это будет примерное усилие, а во-вторых, как быть, если требуется их закручивать несколько десятков за смену? Выход есть – использовать прочный и точный динамометрический ключ, четко контролирующий усилие, с которым затягивается любое резьбовое соединение.
О принципах работы и видах этих ключей, а также о наиболее популярных моделях читайте далее.
Классификация динамометрических ключей и принцип работы
Прежде чем приступить к выбору динамометрического ключа, нужно узнать, какие они бывают. Это очень важно: каждый вид имеет свои особенности конструкции и работы, следовательно, свою сферу применения, в которой его использование даст максимальные результаты.
Ключи предельного (пружинного) типа. На тело ключа и вращающейся части нанесено по шкале. Сначала нужно отпустить стопорную гайку, потом, вращая рукоятку, сделать так, чтобы нулевая отметка на ней совпала с необходимой отметкой на шкале ключа. Таким образом, будет установлен нужный момент затяжки. Далее, чтобы прибавить значения на шкале рукояти к первому установленному значению, следует вращать рукоять по часовой стрелке до тех пор, пока оно не совпадет со следующим значением нулевой отметки. После этого можно зафиксировать стопорную гайку и затягивать крепеж. Нет необходимости следить за установленным значением усилия: при его достижении вы услышите щелчок, который скажет о том, что крепеж затянут с заданным значением.
Кому пригодятся такие гаечные ключи? Например, слесарям станций СТО, когда нужно затягивать большое количество гаек в смену, при этом высокая точность значения не играет большой роли. Погрешность составляет ± 4%.

Цифровые ключи. Самый точный вид инструмента — погрешность составляет около 1%. Работа этим видом ключа строится следующим образом. На корпусе находится несколько кнопок: для включения устройства, выбора единицы измерения момента, установки нужного значения момента и его регулировки, зуммер для подачи сигнала. После установки всех параметров можно приступить к работе — во время закручивания на дисплее отображается текущее значение усилия. При достижении необходимого значения ключ издает звуковой сигнал.
Где использовать такие ключи? На станциях технического обслуживания для закручивания особо ответственных соединений, например, для закрепления литого легкосплавного диска, который даже при небольшом превышении усилия может треснуть. Цифровым ключом удобно пользоваться и на промышленных предприятиях по ремонту и обслуживанию станков, железнодорожного транспорта и т.д.
Особенности использования динамометрических ключей
Приобретая инструмент, хочется, чтобы он работал не только точно, но еще и долго. Для этого важно соблюдать следующие действия:
После использования обязательно нужно очищать инструмент чистой ветошью и периодически его смазывать. Чтобы ключ не терял точность работы, примерно раз в 1000 применений нужно его проверять.
Как выбрать динамометрический ключ?
От выбора инструмента по техническим характеристикам напрямую зависит качество выполняемой работы и его долговечность. Каковы главные параметры динамометрических ключей? Рассмотрим подробнее.
Совет. При выборе усилия, с которым будете затягивать ключ, ориентируйтесь таким образом: нужное вам значение должно находиться примерно в середине диапазона значений усилий самого ключа.
Итак, динамометрический ключ пригодится не только профессиональным работникам автомастерских и СТО для проверки усилия затягивания, но и автомобилистам-любителям. Приобретая инструмент, вы получаете:
Заказать выбранную модель ключа можно по телефону 8-800-333-83-28 (звонок по России бесплатный) или через Личный кабинет.
Затяжка болтов динамометрическим ключом: таблицы, способы определения усилий
Чтобы увеличить прочность и срок эксплуатации резьбовых соединений, а также повысить их сопротивление различным внешним факторам необходимо правильно закрутить крепежные элементы, рассчитав усилие завинчивания. Каждое соединение имеет свою определенную степень затяжки в зависимости от посадочного места. Момент затяжки рассчитывается в зависимости от температурного режима, свойства материала и нагрузки, которая будет оказываться на резьбовое соединение.
К примеру, под воздействием температурных показателей металл начинает расширяться, а под воздействием вибрации на элемент оказывается дополнительная нагрузка. Соответственно, для минимизации воздействующих факторов, болты необходимо закручивать с расчетом правильного усилия. Предлагаем ознакомиться с таблицей силы затяжки болтов, а также методами и инструментами выполнения работ.
Что такое затяжное усилие и как его узнать?
Моментом затяжки называют показатель усилия, который необходимо приложить для резьбовых соединений в процессе их завинчивания. Если крепеж был закручен с прикладыванием небольшого усилия, чем это было нужно, то при воздействии различных механических факторов резьбовое соединение может не выдержать, теряется герметичность скрепленных деталей, что влечет за собой тяжелые последствия. Так же и при чрезмерном усилии, резьбовое соединение или скрепляемые детали могут попросту разрушиться, что приведет к срыву резьбы или появлению трещин в конструкционных элементах.
Каждый размер и класс прочности резьбовых соединений имеет определенный момент затяжки при работе с динамометрическим ключом, который указывается в специальной таблице. При этом обозначение класса прочности изделия располагается на его головке.
Маркировка и класс прочности деталей
Цифровое обозначение параметра прочности метрического болта указано на головке, и представлено в виде двух цифр через точку, к примеру: 4.6, 5.8 и так далее.
Предельная текучесть представляет собой максимальную нагрузку на конструкцию болта. Элементы, которые выполняются из нержавеющих видов стали, имеют обозначение непосредственно самого вида стали (А2, А4), и только после этого указывается предельная прочность.
К примеру, А2-50. Значение в подобной маркировке обозначает 1/10 прочностного предела углеродистой стали. При этом, изделия, для изготовления которых используется углеродистая сталь, имеют класс прочности – 2.
Обозначение прочности для дюймовых болтов отмечается насечками на его головке.

В чем измеряется затяжное усилие?
Основная величина измерения усилия затяжки болтов – Паскаль (Па). Международная система «СИ» предполагает, что данной единицей измеряется как давление, так и механическое напряжение. Соответственно, Паскаль равен значению давления, которое вызывается силой равной одному Ньютону и равномерным образом распределяется на плоскости размером в 1 м2.
Чтобы понять как можно конвертировать одну единицу измерения в другую, посмотрим пример:
Значения усилий затяжки для различных типов болтов (таблица)
Для более удобного и точного восприятия представлена таблица затяжки болтов динамометрическим ключом.
| Резьба | Класс прочности, Нм | Головка, мм | |||||||
| 3.6 | 4.6 | 5.8 | 6.8 | 8.8 | 9.8 | 10.9 | 12.9 | ||
| М5 | 1.71 | 2.28 | 3.8 | 4.56 | 6.09 | 6.85 | 8.56 | 10.3 | 8 |
| М6 | 2.94 | 3.92 | 6.54 | 7.85 | 10.5 | 11.8 | 14.7 | 17.7 | 10 |
| М8 | 7.11 | 9.48 | 15.8 | 19 | 25.3 | 28.4 | 35.5 | 42.7 | 13 |
| М10 | 14.3 | 19.1 | 31.8 | 38.1 | 50.8 | 57.2 | 71.5 | 85.8 | 17 |
| М12 | 24.4 | 32.6 | 54.3 | 65.1 | 86.9 | 97.7 | 122 | 147 | 19 |
| М14 | 39 | 52 | 86.6 | 104 | 139 | 156 | 195 | 234 | 22 |
| М16 | 59.9 | 79.9 | 133 | 160 | 213 | 240 | 299 | 359 | 24 |
| М18 | 82.5 | 110 | 183 | 220 | 293 | 330 | 413 | 495 | 27 |
| М20 | 117 | 156 | 260 | 312 | 416 | 468 | 585 | 702 | 30 |
| М22 | 158 | 211 | 352 | 422 | 563 | 634 | 792 | 950 | 32 |
| М24 | 202 | 270 | 449 | 539 | 719 | 809 | 1011 | 1213 | 36 |
Также представим таблицу момента затяжки для дюймовых видов резьб по стандарту, который применяется в Соединенных Штатах.
| Дюймы | Нм | Фунт |
| 1/4 | 12±3 | 9±2 |
| 5/16 | 25±6 | 18±4.5 |
| 3/8 | 47±9 | 35±7 |
| 7/16 | 70±15 | 50±11 |
| 1/2 | 105±20 | 75±15 |
| 9/16 | 160±30 | 120±20 |
| 5/8 | 215±40 | 160±30 |
| 3/4 | 370±50 | 275±37 |
| 7/8 | 620±80 | 460±60 |
Значения усилий затяжки для ленточного хомута с червячным зажимом
Ниже приведенная таблица содержит ряд данных про первоначальную установку ленточных хомутов на новом шланге, а также про повторную затяжку уже обжатых шлангов.
| Размер хомута | Нм | Фунт/Дюйм |
| 16мм — 0,625 дюйма | 7,5±0,5 | 65±5 |
| 13,5мм — 0,531 дюйма | 4,5±0,5 | 40±5 |
| 8мм — 0,312 дюйма | 0,9±0,2 | 8±2 |
| Усилие затяжки для повторных стяжек | ||
| 16мм | 4,5±0,5 | 40±5 |
| 13,5мм | 3,0±0,5 | 25±5 |
| 8мм | 0,7±0,2 | 6±2 |
Определение момента затяжки
Динамометрическим ключом
Подбор этого инструмента должен осуществляться так, чтобы затяжной момент на крепежном элементе был на 20-30% меньше, нежели значение максимального момента на используемом ключе. Если попытаться превысить допустимый лимит, то инструмент может легко сломаться.
Затяжное усилие и марка материала должны присутствовать на каждом изделии, способы расшифровки маркировки описаны выше.
Чтобы выполнить вторичную протяжку болтов, следует придерживаться следующих рекомендаций:
Без использования динамометрического ключа
Чтобы выполнить проверку нам понадобится наличие:
Момент затяжки является усилием, которое необходимо приложить на рычаг размером в 1 метр. К примеру, требуется выполнить затяжку гайки рассчитав для этого усилие в 2 кГс/м:










