длина планка что это

Почему существуют пределы того, что могут прогнозировать физики?

Если делить вещество во Вселенной на все меньшие и меньшие составляющие, вы в конечном итоге достигнете ограничения, столкнувшись с фундаментальной и неделимой частицей. Все макроскопические объекты можно поделить на молекулы, даже атомы, затем электроны (которые фундаментальны) и ядра, затем на протоны и нейтроны, и, наконец, внутри них будут кварки и глюоны. Электроны, кварки и глюоны — примеры фундаментальных частиц, которые нельзя разделить еще больше. Но как такое возможно, чтобы у самого времени и пространства были такие же ограничения? Почему вообще существуют значения Планка, которые уже нельзя делить дальше?

длина планка что это

Чтобы понять, откуда берется планковская величина, стоит начать с двух столпов, которые управляют реальностью: общая теория относительности и квантовая физика.

Общая теория относительности связывает материю и энергию, существующие во Вселенной, с кривизной и деформацией ткани пространства-времени. Квантовая физика описывает, как различные частицы и поля взаимодействуют между собой внутри ткани пространства-времени, в том числе и в очень малых масштабах. Существует две фундаментальные физические константы, которые играют роль в общей теории относительности: G — гравитационная постоянная Вселенной, и c — скорость света. G возникает, поскольку задает показатель деформации пространства-времени в присутствии вещества и энергии; c — потому что это гравитационное взаимодействие распространяется в пространстве-времени на скорости света.

длина планка что это

В квантовой механике тоже появляется две фундаментальные константы: c и h, где последняя — это постоянная Планка. c — это ограничение скорости всех частиц, скорость, с которой должны двигаться все безмассовые частицы, и максимальная скорость, с которой может распространяться любое взаимодействие. Постоянная Планка была невероятной важной для описания того, как квантуются (считаются) квантовые энергетические уровни, взаимодействия между частицами и все возможные исходы событий. Электрон, вращающийся вокруг протона, может иметь любое количество энергетических уровней, но все они появляются дискретными шагами, и размер этих шагов определяется h.

Совместите три этих постоянных: G, c и h, и сможете использовать разные их сочетания для построения шкалы длины, массы и периода времени. Они известны, соответственно, как длина Планка, масса Планка и время Планка. (Можно построить и другие величины, например, энергию Планка, температуру Планка и так далее). Все это, в общем и целом, шкала длины, массы и времени, при которых — в отсутствие какой-либо другой информации — будут значительными квантовые эффекты. Есть хорошие причины полагать, что это так и есть, и довольно легко понять — почему так.

Представьте, что у вас есть частица определенной массы. Вы задаете вопрос: «Если бы моя частица имела такую массу, в насколько малый объем ее нужно сжать, чтобы она стала черной дырой?». Вы еще можете спросить: «Если бы у меня была черная дыра определенного размера, за какое время частица, двигающаяся на скорости света, преодолела бы расстояние, равное этому размеру?». Масса Планка, длина Планка и время Планка соответствуют именно таким величинам: черная дыра планковской массы будет планковской длины и пересекаться со скорость света за планковское время.

длина планка что это

Но планковская масса намного, намного более массивна, чем любые частицы, которые мы когда-либо создавали; она в 10 19 раз тяжелее протона! Длина Планка, точно так же, в 10 14 раз меньше любого расстояния, которое мы когда-либо зондировали, а планковское время в 10 25 раз меньше любого прямо измеренного. Эти масштабы никогда не были напрямую доступны для нас, но они важны по другой причине: планковская энергия (которую вы можете получить, поместив планковскую массу в E = mc 2 ) – это масштаб, при котором квантово-гравитационные эффекты начинают приобретать важность и значимость.

Это значит, что при энергии такой величины — или временных масштабах короче времени Планка, или шкалы длины меньше длины Планка — наши нынешние законы физики должны нарушаться. В игру вступают эффекты квантовой гравитации, и предсказания общей теории относительности перестают быть надежными. Кривизна пространства становится очень большой, а значит и «фон», который мы используем для расчета квантовых величин, тоже перестает быть надежным. Неопределенность энергии и времени означает, что неопределенности становятся выше значений, которые мы знаем как рассчитать. Короче говоря, привычная нам физика больше не работает.

длина планка что это

Для нашей Вселенной это не проблема. Эти энергетические масштабы в 10 15 раз выше, чем те, которых может достичь Большой адронный коллайдер, и в 100 000 000 раз больше самых энергетических частиц, которые создает сама Вселенная (космические лучи высокой энергии), и даже в 10 000 раз выше показателей, которых достигла Вселенная сразу после Большого Взрыва. Но если бы мы хотели исследовать эти пределы, есть одно место, где они могут быть важны: в сингулярностях, расположенных в центрах черных дыр.

длина планка что это

В этих местах массы, значительно превосходящие планковскую массу, сжимаются в размер, теоретически меньший длины Планка. Если во Вселенной есть место, где мы сводим все линии в одну и входим в режим Планка, то это оно. Мы не можем получить к нему доступ сегодня, потому что оно закрыто горизонтом событий черной дыры и недоступно. Но если мы будем достаточно терпеливы — а терпения потребуется много — Вселенная даст нам такую возможность.

длина планка что это

Видите ли, черные дыры со временем медленно распадаются. Интеграция квантовой теории поля в искривленном пространстве-времени ОТО означает, что небольшое количество излучения испускается в пространстве вне горизонта событий, а энергия для этого излучения исходит из массы черной дыры. Со временем масса черной дыры уменьшается, горизонт событий сжимается, и через 10 67 лет черная дыра солнечной массы полностью испарится. Если бы мы могли получить доступ ко всему излучению, покинувшему черную дыру, включая самые последние моменты ее существования, мы, несомненно, смогли бы собрать воедино все квантовые эффекты, которых не предсказывали наши лучшие теории.

Совсем не обязательно, что пространство нельзя разделить на еще более мелкие единицы, чем планковская длина, и что время нельзя разделить на единицы меньшие, чем планковское время. Просто мы знаем, что наше описание Вселенной, в том числе наши законы физики, не могут выйти за пределы этих масштабов. Квантуемо ли пространство? Течет ли время непрерывно на самом деле? И что нам делать с тем фактом, что все известные фундаментальные частицы во Вселенной имеют массы намного, намного меньше планковской? На эти вопросы в физике нет ответов. Планковские масштабы не столь фундаментальны в ограничении Вселенной, сколь в нашем понимании Вселенной. Поэтому мы продолжаем экспериментировать. Возможно, когда у нас будет больше знаний, мы получим ответы на все вопросы. Пока нет.

Источник

Что такое планковская длина?

длина планка что это

Масштаб Вселенной невероятно сложно представить. Подумайте о самом большом, что вы можете придумать. Это может быть настолько большой объект, насколько вы можете себе представить. Но масштаб Вселенной все равно будет на много порядков больше этого. Он намного больше, чем вы можете себе представить.

Но что самое интересное, что он к тому же и меньше, чем вы можете себе представить. Подумайте о самом маленьком, что вы можете вообразить — бактерии, вирусы, атомы? Но во Вселенной есть длина на много порядков меньше любого атома.

И в этом проблема. Большинство из нас не может постичь масштаб Вселенной, потому что он совершенно не связан с чем-либо, с чем мы имеем дело в повседневной жизни.

Например, есть как минимум 10 секстиллионов звезд — это 10 с 22 нулями. Это в тысячи раз больше, чем песчинок на всех пляжах Земли. Но вы, может быть, слышали об этом раньше.

Что такое планковская длина и как мы можем ее представить? И почему именно она самая маленькая во Вселенной?

Начнем со шкалы человеческого существа, потому что это, вероятно, самая подходящая шкала, о которой мы можем думать. Представьте себе обычные вещи, с которыми мы имеем дело каждый день — здесь все просто.

Теперь давайте уменьшимся на один порядок, так что теперь мы смотрим на вещи в масштабе примерно 10 сантиметров. Это такие объекты, как например, мышь-землеройка — одна из самых маленьких млекопитающих на Земле, или куриное яйцо.

Теперь двинемся немного быстрее, допустим, в тысячу раз меньше человеческого масштаба, порядка 1 миллиметра или одной тысячной метра. Здесь вы найдете такие вещи, как песчинка длиной около полумиллиметра или тихоходка — микроскопическое беспозвоночное, которое очень сложно увидеть невооруженным глазом.

длина планка что этоМакс Планк — немецкий физик-теоретик, основоположник квантовой физики.

Далее перейдем в размеры в 1000 раз меньше предыдущих. Теперь мы будем в сто раз меньше ширины человеческого волоса. И в десять раз меньше даже бактерий. Здесь мы можем найти такие объекты, как большие вирусы. В отличие от бактерий, 99% которых для вас безвредны, за некоторым исключением.

Уменьшим размеры еще в 1000 раз. Это уже нанометры, или одна миллиардная часть метра. Сейчас мы видим вселенную, которую не можем увидеть в оптические телескопы. Эти размеры в десять раз меньше ДНК, основы всей жизни на Земле. Это масштаб размера молекул, таких как молекула глюкозы, которые ваше тело использует в качестве источника энергии. И масштаб самого большого атома — цезия.

Уменьшим размеры еще в 1000 раз. Это одна триллионная часть метра. Это порядок длины волны гамма-излучения. Это электромагнитное излучение наивысшей энергии, состоящее из фотонов с наибольшей энергией. Гамма-лучи излучаются во время ядерного взрыва и высокоэнергетического космологического явления, такого как взрывы звезд непосредственно перед их коллапсом в черную дыру.

Однако размер типичного атома в 100 000 раз больше, чем его ядро. Итак, если бы атом был размером с футбольный стадион, ядро было бы маленьким шариком, расположенным в самом центре.

Планковская длина фактически выводится из фундаментальных констант Вселенной, которые определяют свойства пространства-времени:

Скорость света — c, что означает максимальную скорость связи во Вселенной. Гравитационная постоянная — G, которая обозначает величину силы тяжести между двумя массивными объектами и постоянная Планка — h, которая связывает, сколько энергии несет фотон в зависимости от его электромагнитной частоты.

На самом деле это единственные константы, которые определяют фундаментальные свойства вселенной и всего ее содержимого. Используя различные комбинации этих фундаментальных констант, вы можете определить длину.

длина планка что это Структура пространства в зависимости от масштаба.

Но что означает эта длина? Почему это важно?

Планковская длина — это наименьшая длина, на которой сила тяжести будет действовать. Это масштаб и размер струн в теории струн. Это также масштаб, в котором пространство-время теоретически квантуется в теории петлевой квантовой гравитации.

Так почему же это самая маленькая длина? В 1964 году Ч. Олден Мэн определил, что, используя известные законы квантовой механики и законы гравитации, невозможно определить положение объекта с точностью, меньшей, чем планковская длина. Итак, исходя из того, что в настоящее время известно о квантовой механике, длина, меньшая, чем длина Планка, не имеет значения.

Одна из замечательных особенностей планковской длины заключается в том, что, поскольку она получена из фундаментальных констант Вселенной, которые по определению применимы ко всему, она будет одинаковой независимо от того, на каком языке вы говорите, какие единицы измерения вы используете или даже с какой планеты вы могли бы прилететь.

Вполне вероятно, что если мы когда-нибудь встретим инопланетян из другого мира и сравним знания, у обоих цивилизаций будет одинаковое значение для наименьшей возможной длины во Вселенной.

По этой ссылке вы можете посмотреть анимации, чтобы исследовать различные масштабы Вселенной.

Источник

Планковская длина и планковское время: хранители тайн Вселенной

За последние 100 лет физики построили точные и действенные теории о Вселенной — от самого маленького до самого большого. Однако есть масштабы, на которых все эти теории не работают и которые хранят самые большие тайны о законах природы.

длина планка что это

Мы привыкли жить в мире крупных, макроскопических вещей. Все, с чем сталкивается обычный человек в течение дня — от чашки кофе с утра до огромного огненного шара в небе под названием Солнце, — вещи, которые мы можем либо видеть, либо осязать. Однако еще в Древней Греции философы, в частности Демокрит и его учитель Левкипп, предположили, что все состоит из мельчайших неделимых частиц — атомов (в переводе с греческого буквально означает «неделимый»).

Со временем был открыт атом, а затем и его свойство, что он вовсе не неделимый, а состоит из ядра и вращающегося вокруг него электрона. Затем выяснилось, что и ядро состоит из протонов и нейтронов. Еще позже были открыты кварки, из которых состоят протоны и нейтроны атомных ядер. Эти миниатюрные частицы называют элементарными. Помимо кварков, среди элементарных частиц есть уже упомянутые электроны, бозоны, нейтрино и фотоны. Все они считаются теми самыми древнегреческими «атомами» — неделимыми.

В 1899 году (в некоторых источниках — в 1900-м) немецкий физик и по совместительству основоположник квантовой теории Макс Планк предложил особую меру измерения — планковские единицы. Это единицы, предназначенные для упрощения определенных алгебраических выражений, присутствующих в теоретической физике, в частности в квантовой механике. В число их входят такие фундаментальные единицы, как планковская масса, планковская температура, планковская длина и планковское время. В этом материале мы рассмотрим планковскую длину и планковское время и попробуем сделать это наиболее понятным способом, без сложных математических выкладок (хотя некоторые формулы нам понадобятся).

Как вы уже знаете, физика занимается изучением не только огромных космических структур вроде галактик и туманностей, но и невероятно маленькими явлениями на атомном и субатомном масштабах. Однако существует еще одна реальность в масштабах, которые намного меньше того, что науке удалось изучать. На этом уровне есть величина, настолько сильно выходящая за рамки традиционного понимания «маленького», что ее тяжело представить. Это планковская длина — она в 1020 раз меньше диаметра ядра атома водорода. Предполагается (или, точнее сказать, подозревается), что именно на этом уровне формируется «пена» пространства-времени. Чтобы осознать, о какой величине идет речь, можно заглянуть в анимацию «Масштаб Вселенной» по этой ссылке.

И все же о каких размерах идет речь? Планковская длина составляет всего 1,616 х 10-35 метра. Вычислить ее можно при помощи уравнения, включающего в себя целых три фундаментальные константы — постоянную Планка (6,6261 х 10-34), скорость света в вакууме (2,29979 х 108 м/с) и гравитационную постоянную (6,6738 х 10-11):

Впервые Макс Планк пришел к этой примечательной единице после работы над излучением черного тела и квантовой механики. Вероятно, вы слышали, что это самая малая возможная длина.

Тут, как и в случае с древнегреческой концепцией атома, можно сказать: «Конечно, если у меня есть некая длина и я разделяю ее пополам, а затем повторяю это снова и снова, я буду получать все меньшие и меньшие значения». Однако мы говорим о масштабах, на которых физика уже не способна делать то же, что и математика. Один из самых ярких примеров таких невозможностей — движение со сверхсветовой скоростью. То есть на бумаге вы можете применить к массе силу и ускорить ее до скорости света и выше, но нам известно, что в природе это попросту физически невозможно, поскольку масса объекта (а значит, и энергия, необходимая для его ускорения) возрастает бесконечно. Получается, мы не способны осуществить в реальности все, что можем сделать на бумаге.

длина планка что это

Теория струн предсказывает существование струн, составляющих все элементарные частицы, именно в масштабах планковской длины / © Universe Review

Итак, каким образом такая малая величина вписывается в физику? Если две частицы разделены планковской длиной или еще меньшим расстоянием, то невозможно определить позиции каждой из них. Более того, любые эффекты квантовой гравитации на этом масштабе (если они вообще есть) неизвестны науке, так как там само пространство не определено должным образом. В некотором смысле можно сказать: даже если бы мы разработали методы измерений, способные «заглянуть» в эти масштабы, мы никогда не смогли бы измерить что-либо меньшее, вне зависимости от дальнейшего совершенствования наших методов и оборудования.

Согласно стандартной космологической модели Вселенная родилась в результате Большого взрыва, начавшегося в бесконечно плотной точке. Особенно интересно то, что физики и космологи не имеют ни малейшего понятия, какие законы физики господствовали во Вселенной, прежде чем она превысила по своим размерам планковскую длину, так как еще нет подтвержденной теории квантовой гравитации. Тем не менее эта единица оказалась полезной во множестве разных уравнений, которые помогли вычислить и исследовать некоторые из самых главных тайн Вселенной.

Например, планковская длина — ключевой компонент в уравнении Бекенштейна и Хокинга для расчета энтропии черной дыры. Струнные теоретики считают, что именно на этом масштабе существуют «вибрирующие» струны, из которых состоят элементарные частицы Стандартной модели. Вне зависимости от того, верна теория струн или нет, с уверенностью можно сказать одно: в поиске объединенной теории всего понимание планковской длины и связанной с ней физики сыграет ключевую роль.

длина планка что это

Самые первые моменты существования Вселенной в космологии называют планковской эпохой / © University of Illinois

А что насчет планковского времени? Если в двух словах, то планковское время — это время, за которое свет в вакууме проходит планковскую длину. Следовательно, эти две величины связаны между собой. Любопытно, что для вычисления планковского времени необходимы постоянная Планка, гравитационная постоянная и скорость света в вакууме. Точное значение планковского времени — 5,391 х 10-44 секунд, а вычисляется оно по формуле:

Планковское время также называют квантом времени — самым малым значением времени, имеющим какое-то фактическое значение. Меньшие значения времени не имеют никакого смысла. Возвращаясь к теоретическим гипотезам, струнные теоретики предполагают, что струны размером в планковскую длину вибрируют с периодичностью, соответствующей планковскому времени. В 2003 году при анализе снимков Deep Field с телескопа «Хаббл» некоторые ученые высказали предположения, что если бы на планковском масштабе присутствовали флуктуации пространства-времени, то изображения очень далеких объектов были бы размытыми. Снимки «Хаббла», как они утверждали, были слишком точными, что, по мнению специалистов, ставило под сомнение концепцию планковских масштабов. Другие представители научного сообщества не согласились с этим предположением, отметив, что такие флуктуации были бы слишком малы, чтобы их можно было наблюдать. Кроме того, было высказано предположение, что ожидаемая размытость была устранена большими размерами объектов на снимках.

длина планка что это

Снимок Hubble Ultra-Deep Field / © NASA/ESA/R. THOMPSON

Итак, планковская длина и связанное с ней планковское время определяют масштабы, на которых современные физические теории перестают работать. Вся геометрия пространства-времени, предсказанная Общей теорией относительности, перестает иметь всякий смысл. Эти масштабы хранят еще неоткрытую теорию, объединяющую Общую теорию относительности и квантовую механику, которая сможет наиболее полно описать законы физики. В сущности говоря, именно по этой причине современные описания развития Вселенной начинаются только спустя 5,391 х 10-44 секунд после Большого взрыва, когда Вселенная была размером 1,616 х 10-35 метров.

Источник

Расстояние, меньше которого перестаёт существовать само пространство

длина планка что это

Вооружившись ручкой и листом бумаги, мы можем оперировать практически неограниченными величинами, но то что возможно в математике, зачастую оказывается невозможно в физике.

Возьмите некую длину и разделите ее пополам, затем разделите на две части полученную половинку и повторите это снова и снова. Каждый раз вы будете получать всё меньшие значения, это понятно, но каковым будет конечный результат такого деления?

Меньше быть уже ничего не может, ибо, как предполагается, при преодолении планковской длины перестает существовать само пространство. Впрочем, не всё так очевидно.

Утверждение, что планковская длина является минимальной основывается на невозможности измерить меньшие расстояния. Ведь что нужно, чтобы измерить тот или иной отрезок или объект? Если он достаточно велик, приложить к нему линейку, если микроскопически мал — направить на него поток фотонов, которые, будучи отраженными, зарегистрируются высокоточными приборами.

Но вот тут начинается самое интересное. Чем меньше длина волны, тем более маленькие объекты можно измерять, однако вместе с уменьшением длины волны возрастает и энергия излучаемых фотонов. Так вот, в какой-то момент длина волны окажется настолько малой, а энергия электромагнитного излучения настолько большой, что фотоны коллапсируют в микроскопическую черную дыру, которая тут же подвергнется распаду. То есть измерить расстояние меньшее мы не сможем просто в силу ограничивающих нас законов физики.

Эта предельная длина волны как раз и равна планковской естественной единице.

Возможно ли существование длин меньше планковской хотя бы гипотетически?

Да, но тогда вся выведенная из Общей теории относительности геометрия пространства утратила бы свой смысл. Чтобы описать меньшие величины, если они возможны в принципе, нам потребуется еще более совершенная и масштабная теория, которая объединит теорию относительности с квантовой механикой или та самая Теория всего, над созданием которой трудятся лучшие умы планеты.

Источник

Четыре универсальные константы, которые по определению имеют числовое значение 1 при выражении в этих единицах:

Единицы Planck не учитывают электромагнитный размер. Некоторые авторы решили расширить систему до электромагнетизма, например, определив электрическую постоянную ε 0 как имеющую числовое значение 1 или 1/4 π в этой системе. Точно так же авторы предпочитают использовать варианты системы, которые присваивают другие числовые значения одной или нескольким из четырех констант, указанных выше.

Содержание

Введение

можно выразить как:

Определение

Это следствие того, что система внутренне согласована. Например, сила гравитационного притяжения двух тел массой 1 Планка каждое, разделенных на 1 длину Планка, равна 1 когерентной планковской единице силы. Точно так же расстояние, проходимое светом за 1 планковское время, равно 1 планковской длине.

Чтобы определить в единицах СИ или другой существующей системе единиц количественные значения пяти основных единиц Планка, должны быть выполнены эти два уравнения и три других:

Решение пяти приведенных выше уравнений для пяти неизвестных приводит к уникальному набору значений для пяти базовых единиц Планка:

Производные единицы

В любой системе измерения единицы для многих физических величин могут быть получены из основных единиц. В таблице 3 представлен образец производных единиц Планка, некоторые из которых на самом деле используются редко. Как и в случае с базовыми единицами, их использование в основном ограничивается теоретической физикой, потому что большинство из них слишком велики или слишком малы для эмпирического или практического использования, и в их значениях есть большие погрешности.

История

Значимость

Таблица 5: Интерпретации единиц Планка

ГодКоличествоИнтерпретацияГлавный научный сотрудник
1954 г.длинагравитационный предел квантовой теорииОскар Кляйн
1955 г.длинаквантовый предел общей теории относительностиДжон Уиллер
1965 г.массаверхний предел массы элементарных частицМоисей Марков
1966 г.температураверхний предел температуры (абсолютно горячий)Андрей Сахаров
1971 г.массанижний предел массы черной дырыСтивен Хокинг
1982 г.плотностьпредельная плотность веществаМоисей Марков

Планковский масштаб

Отношение к гравитации

В космологии

По сравнению с эпохой Планка наблюдаемая Вселенная сегодня выглядит экстремальной, если выразить ее в единицах Планка, как в этом наборе приближений:

Таблица 6: Сегодняшняя Вселенная в единицах Планка.

Собственность
современной наблюдаемой Вселенной
Приблизительное количество
единиц Планка
Эквиваленты
Возраст8,08 × 10 60 т П4,35 × 10 17 с, или 13,8 × 10 9 лет
Диаметр5,4 × 10 61 л П8,7 × 10 26 м или 9,2 × 10 10 световых лет
Массаок. 10 60 м P3 × 10 52 кг или 1,5 × 10 22 массы Солнца (только с учетом звезд)
10 80 протонов (иногда называемое числом Эддингтона )
Плотность1,8 × 10 −123 ρ P9,9 × 10 −27 кг м −3
Температура1,9 × 10 −32 Т П2.725 K
температура космического микроволнового фонового излучения
Космологическая постоянная5,6 × 10 −122 т −2
P
1,9 × 10 −35 с −2
Постоянная Хаббла1,18 × 10 −61 т −1
P
2,2 × 10 −18 с −1 или 67,8 (км / с) / Мпк

T −2 на протяжении всей истории Вселенной.

Анализ агрегатов

Планковская площадь

Планковский заряд

Планковская плотность

Планковская энергия

Сила Планка

Сила Планка является производной единицей силы в результате определения базовых единиц Планка для времени, длины и массы. Он равен естественной единице количества движения, деленной на естественную единицу времени.

F п знак равно м п c т п знак равно c 4 грамм знак равно 1,210295 × 10 44 Н. <\ displaystyle F _ <\ text

> = <\ frac > c>>>> = <\ frac > > = 1,210295 \ times 10 ^ <44><\ mbox >> длина планка что это

Сила Планка связана с эквивалентностью гравитационной потенциальной энергии и электромагнитной энергии: сила гравитационного притяжения двух тел с массой 1 планка каждое, разнесенных на 1 планковскую длину, равна 1 силе Планка; эквивалентно, электростатическая сила притяжения / отталкивания двух планковских зарядов, разнесенных на 1 планковскую длину, равна 1 планковской силе.

Нормализация единиц Планка с G = 1 / 8 π (вместо G = 1) устраняет необходимость использования 8 π (см. § Альтернативные варианты нормализации ). Таким образом, сила Планка описывает, насколько или насколько легко пространство-время искривляется заданным количеством массы-энергии.

Планковская длина

Планковская масса

Планковский импульс

длина планка что это

Планковская температура

Планковское время

Хотя в настоящее время нет известного способа измерения временных интервалов в масштабе планковского времени, исследователи в 2020 году предложили теоретический аппарат и эксперимент, которые, если они когда-либо будут реализованы, могут быть подвержены влиянию таких коротких временных эффектов, как 10 −33. секунд, тем самым устанавливая верхний обнаруживаемый предел для квантования времени, которое примерно в 20 миллиардов раз длиннее планковского времени.

Список физических уравнений

Поскольку базовые единицы Планка выводятся из многомерных констант, они также могут быть выражены как отношения между последней и другими базовыми единицами.

Таблица 8: Эквивалентность основных единиц Планка

Планковская длина ( l P )Планковская масса ( м P )Планковское время ( t P )Планковская температура ( T P )Планковский заряд ( q P )
Планковская длина ( l P )л п знак равно ℏ м п c <\ displaystyle l _ <\ text

> = <\ frac <\ hbar>> c>>> длина планка что это

л п знак равно т п c <\ displaystyle l _ <\ text

> = t _ <\ text

> c> длина планка что это

л п знак равно ℏ c Т п k B <\ displaystyle l _ <\ text

> = <\ frac <\ hbar c>> k _ <\ text >>>> длина планка что это

л п знак равно ℏ q п c грамм k е <\ displaystyle l _ <\ text

> = <\ frac <\ hbar>> c>> <\ sqrt <\ frac >> >>> длина планка что это

Планковская масса ( м P )м п знак равно ℏ л п c <\ displaystyle m _ <\ text

> = <\ frac <\ hbar>> c>>> длина планка что это

м п знак равно ℏ т п c 2 <\ displaystyle m _ <\ text

> = <\ frac <\ hbar>> c ^ <2>>>> длина планка что это

м п знак равно Т п k B c 2 <\ displaystyle m _ <\ text

> = <\ frac> k _ <\ text >> >>> длина планка что это

м п знак равно q п k е грамм <\ displaystyle m _ <\ text

> = q _ <\ text

> <\ sqrt <\ frac >> >>> длина планка что это

Планковское время ( t P )т п знак равно л п c <\ displaystyle t _ <\ text

> = <\ frac >> >> длина планка что это

т п знак равно ℏ м п c 2 <\ displaystyle t _ <\ text

> = <\ frac <\ hbar>> c ^ <2>>>> длина планка что это

т п знак равно ℏ Т п k B <\ displaystyle t _ <\ text

> = <\ frac <\ hbar>> k _ <\ text >>>> длина планка что это

т п знак равно ℏ q п c 2 грамм k е <\ displaystyle t _ <\ text

> = <\ frac <\ hbar>> c ^ <2>>> <\ sqrt <\ frac >>>>> длина планка что это

Планковская температура ( T P )Т п знак равно ℏ c л п k B <\ displaystyle T _ <\ text

> = <\ frac <\ hbar c>> k _ <\ text >>>> длина планка что это

Т п знак равно м п c 2 k B <\ displaystyle T _ <\ text

> = <\ frac > c ^ <2>> >>>> длина планка что это

Т п знак равно ℏ т п k B <\ displaystyle T _ <\ text

> = <\ frac <\ hbar>> k _ <\ text >>>> длина планка что это

Т п знак равно q п c 2 k B k е грамм <\ displaystyle T _ <\ text

> = <\ frac > c ^ <2>> >>> <\ sqrt <\ frac >> >>> длина планка что это

Планковский заряд ( q P )q п знак равно ℏ л п c грамм k е <\ displaystyle q _ <\ text

> = <\ frac <\ hbar>> c>> <\ sqrt <\ frac >> >>> длина планка что это

q п знак равно м п грамм k е <\ displaystyle q _ <\ text

> = m _ <\ text

> <\ sqrt <\ frac >>>>> длина планка что это

q п знак равно ℏ т п c 2 грамм k е <\ displaystyle q _ <\ text

> = <\ frac <\ hbar>> c ^ <2>>> <\ sqrt <\ frac >>>>> длина планка что это

q п знак равно Т п k B c 2 грамм k е <\ displaystyle q _ <\ text

> = <\ frac> k _ <\ text >> >> <\ sqrt <\ frac >>>>> длина планка что это

Альтернативные варианты нормализации

Как уже говорилось выше, единицы Планка выводятся путем «нормализации» числовых значений некоторых фундаментальных констант к 1. Эти нормализации не являются единственно возможными и не обязательно лучшими. Более того, выбор факторов, которые следует нормализовать, среди факторов, фигурирующих в основных уравнениях физики, не очевиден, и значения единиц Планка чувствительны к этому выбору.

Есть несколько возможных альтернативных нормализаций.

Гравитационная постоянная

В 1899 году закон всемирного тяготения Ньютона все еще рассматривался как точный, а не как удобное приближение для «малых» скоростей и масс (приблизительная природа закона Ньютона была показана после развития общей теории относительности в 1915 году). Следовательно, Планк нормализовал к 1 гравитационную постоянную G в законе Ньютона. В теориях, появившихся после 1899 г., G почти всегда появляется в формулах, умноженных на 4 π или их небольшое целое число. Следовательно, выбор, который следует сделать при разработке системы естественных единиц, состоит в том, что, если таковые имеются, случаи 4 π, появляющиеся в уравнениях физики, должны быть исключены посредством нормализации.

Электромагнитная постоянная

Постоянная Больцмана

Приведенная постоянная Планка

Единицы Планка и инвариантное масштабирование природы

Джордж Гамов в своей книге « Мистер Томпкинс в стране чудес» утверждал, что достаточное изменение размерной физической константы, такой как скорость света в вакууме, приведет к очевидным ощутимым изменениям. Но эта идея подвергается сомнению:

Если бы скорость света c как-нибудь внезапно уменьшилась вдвое и изменилась на 1 / 2 c (но с аксиомой, что все безразмерные физические величины остаются прежними), то планковская длина увеличилась бы в 2 √ 2 раза с точки зрения какого-нибудь незатронутого наблюдателя снаружи. Измеренная «смертными» наблюдателями в единицах Планка, новая скорость света останется равной 1 новой планковской длине на 1 новое планковское время, что не отличается от старых измерений. Но, поскольку по аксиоме, размер атомов (приблизительно радиус Бора ) связан с планковской длиной неизменной безразмерной константой пропорциональности:

Наши часы будут идти медленнее в 4 √ 2 раза (с точки зрения этого незатронутого наблюдателя снаружи), потому что время Планка увеличилось на 4 √ 2, но мы не заметили бы разницы (наше восприятие длительности времени относительно планковского времени является по аксиоме неизменной безразмерной константой). Этот гипотетический незатронутый наблюдатель снаружи мог бы заметить, что теперь свет распространяется со скоростью вдвое меньшей, чем раньше (а также со всеми другими наблюдаемыми скоростями), но он все равно будет двигаться. 299 792 458 наших новых метров за время, прошедшее до одной из наших новых секунд ( 1 / 2 c × 4 √ 2 ÷ 2 √ 2 продолжает равняться 299 792 458 м / с ). Мы не заметим никакой разницы.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *