для чего используют метод замены переменной метод подстановки интеграла
Методы интегрирования
Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.
В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.
Метод непосредственного интегрирования
Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.
Решение
Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:
∫ f ( x ) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x
Выводим за знак интеграла числовой коэффициент:
∫ f ( x ) d x = ∫ 2 x d x + ∫ 3 2 ( 5 x + 4 ) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ ( 5 x + 4 ) 1 3 d x
Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1
Следовательно, ∫ f ( x ) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · ( 5 x + 4 ) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C
У нас получилось следующее:
∫ f ( x ) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · ( 5 x + 4 ) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C
причем C = C 1 + 3 2 C 2
Ответ: ∫ f ( x ) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C
Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.
Метод подстановки
Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.
Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.
Решение
Далее подставляем полученные выражения в исходный интеграл и получаем:
Теперь нам нужно вернуться к переменной x и получить ответ:
Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.
Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:
∫ f ( k · x + b ) d x = ∫ f ( z ) · d z k = 1 k · ∫ f ( z ) d z = = 1 k · F z + C 1 = F ( z ) k + C 1 k
F ( z ) k + C 1 k = 1 k · F k x + b + C
Метод подведения под знак дифференциала
∫ f ( g ( x ) ) d ( g ( x ) ) = g ( x ) = z = ∫ f ( z ) d ( z ) = = F ( z ) + C = z = g ( x ) = F ( g ( x ) ) + C
Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.
Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.
Решение
Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.
c t g x d x = cos s d x sin x
Все решение в кратком виде можно записать так:
∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C
Ответ: ∫ с t g x d x = ln sin x + C
Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.
Метод интегрирования по частям
Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.
Решение
d ( u ( x ) ) = u ‘ ( x ) d x = a r c t g ( 2 x ) ‘ d x = 2 d x 1 + 4 x 2 v ( x ) = ∫ d ( v ( x ) ) = ∫ d x = x
Далее используем формулу интегрирования по частям и получаем:
Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.
Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.
Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.
Интегрирование методом замены переменной (метод подстановки)
Разделы: Математика
Тип занятия: изучение нового материала.
Студент должен знать: алгоритм вычисления неопределенного интеграла методом подстановки.
Студент должен уметь: применять полученные знания к вычислению неопределенных интегралов.
Мотивация познавательной деятельности студентов.
Преподаватель сообщает, что кроме метода непосредственного интегрирования существуют и другие методы вычисления неопределенных интегралов, одним из которых является метод подстановки. Это наиболее распространенный метод интегрирования сложной функции, состоящий в преобразовании интеграла с помощью перехода к другой переменной интегрирования.
Ход занятия
I. Организационный момент.
II. Проверка домашнего задания.
Фронтальный опрос:
III. Повторение опорных знаний учащихся.
1) Повторить таблицу основных формул интегрирования.
2) Повторить в чем заключается метод непосредственного интегрирования.
Непосредственным интегрированием называется такой способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам.
IV. Изучение нового материала.
Вычислить заданный интеграл непосредственным интегрированием удается далеко не всегда, а иногда это связано с большими трудностями. В этих случаях применяют другие приемы. Одним из наиболее эффективных приемов является метод подстановки или замены переменной интегрирования. Сущность этого метода заключается в том, что путем введения новой переменной интегрирования удается свести заданный интеграл к новому интегралу, который сравнительно легко берется непосредственно. Если после замены переменной интеграл стал проще, то цель подстановки достигнута. В основе интегрирования методом подстановки лежит формула
Рассмотрим этот метод.
Алгоритм вычисления неопределенного интеграла методом подстановки:
Примеры. Найти интегралы:
1) 
Дифференцируя это равенство, имеем:
V. Применение знаний при решении типовых примеров.
VI. Самостоятельное применение знаний, умений и навыков.
VII. Подведение итогов занятия.
VIII. Домашнее задание:
Г.Н. Яковлев, часть 1, §13.2, п.2, №13.13 (1,4,5), 13.15 (1,2,3)
Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
| Сайт: | Навчальний сайт ХНАДУ |
| Курс: | Вища Математика (2 семестр) Вишневецький А.Л. |
| Книга: | Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле |
Зміст
Тема 1. Неопределенный интеграл, его свойства
1. Первообразная
Пусть f ( x ) – данная функция.
2) Любая первообразная для f ( x ) имеет вид F ( x ) + С для некоторого С.
2. Неопределенный интеграл
Здесь f ( x) dx – подынтегральное выражение, f ( x ) – подынтегральная функция, x – переменная интегрирования.
Если функция непрерывна на некотором отрезке, то на этом отрезке существует её неопределенный интеграл.
Операции нахождения дифференциала и неопределенного интеграла – взаимно обратные:
3. Свойства неопределенного интеграла
Формул «интеграл от произведения» и «интеграл от частного» функций нет.
4. Таблица первообразных
Полная запись формулы №1:
Тема 2. Основные методы интегрирования
5. Интегрирование подстановкой (заменой переменной)
Суть метода: путем введения новой переменной интегрирования (т.е. подстановки) свести данный интеграл к более простому (желательно – к табличному).
Начнем с формулы замены. Надо найти интеграл
– формула замены переменной в неопределенном интеграле. После ее применения и вычисления полученного интеграла нужно вернуться к исходной переменной. Формулу (2) применяют как «слева направо», так и «справа налево». Общих методов подбора подстановок не существует.
6. Интегрирование по частям
Укажем способ выбора u и dv в двух типичных случаях. Пусть P(x) – многочлен.
7. Интегрирование простейших рациональных дробей
Простейшие рациональные дроби – это дроби:
1 рода: ( k N ) и 2 рода: (дискриминант знаменателя D n = 1 так:
К первому интегралу применить формулу (4), а второй – табличный (арктангенс).
Методы интегрирования неопределенного интеграла с примерами решения
Содержание:
При решении многих практических задач таких, как вычисление длин линий, площадей, отыскание траекторий движения и других, вводится понятие интегрирования.
Определения
Определение: Первообразной функции
Теорема: (о существовании первообразной) Если функция f(x) непрерывна на сегменте 
Доказательство:
ТЗ. Если 

Доказательство: Пусть 








Пример:
Пусть дана функция 
Решение:
В случае наличия двух первообразных показать, что они отличаются на постоянную величину.
Для функции существуют две первообразные 
Определение: Совокупность всех первообразных функции 



На основании теорем можно записать, что
Определение: Отыскание всех первообразных называется неопределенным интегрированием.
Выясним геометрический смысл неопределенного интеграла. Пусть дана функция 
Пример:
Построить кривые, которые задаются неопределенным интегралом
Решение:
Первообразной для под интегральной функции f(х) = 2х будет функция 

Рис. 1. Интегральные кривые
Свойства неопределенного интеграла
1. Производная от неопределенного интеграла равна под интегральной функции
Доказательство: По определению неопределенного интеграла
2. Дифференциал неопределенного интеграла равен под интегральному выра- жению
Доказательство: По определению дифференциала от неопределенного интеграла имеем
3. Если под интегральное выражение является дифференциалом некоторой функции F(x), тo неопределенный интеграл равен
Доказательство: Так как
4. Неопределенный интеграл от линейной комбинации функций равен той же самой линейной комбинации неопределенных интегралов от этих функций
5. Формула неопределенного интеграла не зависит от обозначения переменной интегрирования
Таблица основных неопределенных интегралов
Методы интегрирования
Метод тождественных преобразований под интегральной функции
Данный метод основан на использовании простых приемов, алгебраических и тригонометрических формул, свойств подынтегральной функции, разложения полиномов на простые множители и свойств неопределенного интеграла. Рассмотрим этот метод на конкретных примерах.
1. Почленное деление числителя дроби на ее знаменатель
Замечание: Следует запомнить, что нет формулы почленного деления знаменателя дроби на ее числитель, т.е.
Пример:
Найти
Решение:
Выполним в под интегральной функции почленное деление числителя дроби на ее знаменатель и воспользуемся свойством линейности неопределенного интеграла
Замечание: Из этого примера видно, что слова «найти неопределенный интеграл” означают: за счет преобразований подынтегральной функции и использования свойств неопределенного интеграла данный интеграл надо привести к совокупности табличных интегралов и воспользоваться этой таблицей.
Замечание: Из примера также видно, что, несмотря на наличие двух табличных интегралов, константа интегрирования С пишется один раз, так как сумма или разность постоянных интегрирования все равно есть постоянная величина.
2. Использование противоположных арифметических операций (например, сложение-вычитание).
Пример:
Найти
Решение:
Анализ под интегральной функции показывает, что в числитель дроби надо добавить и вычесть 1 (при этом подынтегральная функция не изменится), а затем воспользоваться первым приемом (почленное деление числителя дроби на ее знаменатель)
3. Использование алгебраических и тригонометрических формул, например,

Пример:
Найти
Решение:
Воспользуемся формулой квадрата разности
Пример:
Найти
Решение:
4. Использование свойств функций, например,
Пример:
Вычислить
Решение:
Пример:
Вычислить
Решение:
5. Использование разложения полиномов на простые множители, например, 


Пример:
Найти
Решение:
По теореме Виета уравнение 


Метод замены переменной интегрирования
Данный метод основан на формуле
Метод замены переменной интегрирования применяется в двух случаях:
а) Если аргумент функции отличается от простого аргумента х, то этот сложный аргумент принимается в качестве новой переменной интегрирования t.
Пример:
Вычислить
Решение:
Так как показатель степени экспоненты отличается от простого аргумента х, то этот показатель степени принимаем в качестве новой переменной интегрирования, т.е.
Замечание: После нахождения первообразной с новой переменной интегрирования надо обязательно вернуться к старой переменной интегрирования.
Пример:
Вычислить
Решение:
Выражение, стоящее в круглых скобках, является аргументом степенной функции и отличается от простого аргумента х, поэтому принимаем его в качестве новой переменной интегрирования, т.е.
Пример:
Вычислить
Решение:
Выражение, стоящее в круглых скобках, является аргументом функции синус и отличается от простого аргумента х, поэтому принимаем его в качестве новой переменной интегрирования, т.е. 
Пример:
Найти
Решение:
В подынтегральном выражении содержится элементарная функция tgx и в качестве множителя при dx присутствует ее первая производная 
Пример:
Найти
Решение:
Данный пример объединяет первый метод с методом замены переменной интегрирования. Выполним почленное деление числителя дроби на ее знаменатель и разобьем интеграл на два интеграла, для которых применяются два случая замены переменной интегрирования
Замечание: Умение отыскивать подходящую замену вырабатывается в процессе многократных упражнений, однако можно указать ряд случаев, когда можно сразу увидеть необходимую замену переменной интегрирования при анализе подынтегрального выражения, например, 
Метод интегрирования по частям
Интегрирование по частям основано на использовании формулы дифференциала от произведения двух функций 
Таким образом, для неопределенного интеграла формула интегрирования по частям имеет вид:
Для того чтобы знать, какую из функций принимать за U (все остальное в подынтегральном выражении принимается за dV), рассмотрим наиболее часто встречающиеся случаи:
1. 
В этом случае
Замечание: Для нахождения функции dU используют определение дифференциала функции. При вычислении функции V интегрируют выражение dV, при этом постоянная интегрирования полагается равной нулю (С = 0). После выполнения этих действий применяют формулу интегрирования по частям.
Пример:
Вычислить
Решение:
Применим метод интегрирования по частям
Замечание: Из приведенного примера видно, что при необходимости метод интегрирования по частям применяется повторно.
2. Для интегралов вида
Пример:
Вычислить
Решение:
Действуя согласно методике, получим
3. Для интегралов вида 




Пример:
Найти
Решение:



4. Нестандартные интегралы требуют для своего вычисления приобретения опыта на практических занятиях.
Пример:
Найти
Решение:
Неопределенный интеграл
Определение 1. Пусть Δ − промежуток действительной оси. Функция y=F(x) называется первообразной для функции y=f(x) на промежутке Δ, если F(x) − дифференцируема на Δ и 
Пример:
а) F(x)=x − первообразная для 
б) 

в) 


Теорема 1. Две дифференцируемые на промежутке Δ функции 



Тогда 

По теореме Лагранжа (теорема 4 § 12): 
Достаточность. 

Тогда 

для одной и той же функции y=f(x), что и требовалось доказать.
Свойства неопределенного интеграла
Свойства 1 – 4 легко выводятся из определения первообразной и интеграла
и соответствующих свойств производной.
Докажем, например, свойство 3.
Из определений 1,2 следует, что интегрирование – действие обратное
дифференцированию (находится функция, производная которой равна данной).
Таблица интегралов
При вычислении интегралов в простых случаях применяют свойства 1 – 4.
Пример:

Пример:
Замена переменной в неопределенном интеграле
Пример:
Пример:
Пример:

При поднесении под дифференциал можно использовать свойства
дифференциала (см. § 6) 
Пример:
Пример:
Пример:
Иногда в формуле (2) легче вычислять левую часть, чем правую:

Формула (5) – формула интегрирования с помощью замены переменной 

Пример:
Интегрирование по частям в неопределенном интеграле
Пример:
Пример:
Замечание.
Пример:
Пример:
Таким образом, проинтегрировав дважды по частям, получили уравнение,
содержащее 
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

















































































