для чего изгибают трубы теплотрассы
Компенсаторы для трубопроводов отопления и водоснабжения: их виды, назначение и установка
Компенсатор — это устройство предназначенное компенсировать температурные расширения, вибрационные воздействия, перепады давления, смещения. Позволяет избежать, стабилизировать или свести к минимуму нежеланные последствия, возникающие в результате действия этих факторов. Применяется в магистральных трубопроводах различного назначения.
Одним из способов решения этой задачи стали компенсаторы для трубопроводов отопления. Такие компенсаторы применяются не только на магистральных трубах и распределительных сетях, но и внутри домовых тепловых (и не только) разводках.
Виды компенсаторов
Конструктивно такие приспособления бывают следующих видов:
Уже было сказано, что эти устройства отличаются высокой возможностью компенсирования, и она увеличивается пропорционально увеличению объема сети.
Важно! Сальниковый вид механизмов отлично выдерживает температурный режим, но их не разрешают применять в сеть, где проходит агрессивная химическая среда. Дело в том, что их набивка плохо противостоит такому влиянию. В таких условиях рекомендуют применение сильфонных или резиновых видов.
Установка компенсирующих систем весьма желательна на трубопроводах систем отопления и разводках горячего водоснабжения внутридомовых тепловых сетей частного дома.
Установка компенсаторов обязательна независимо от материала трубопровода;
Кроме основной функции гашения вибраций успешно работает при тепловых деформациях трубопроводов для отопления, а также в случае возникновения радиальных смещений и угловых деформаций.
Почему теплосети разного диаметра и изогнутые?
Для начала давайте поймём, как тепло попадает в наши батареи. В виде горячей воды и пара оно передается по трубам от ТЭЦ к домам. Протяженность этих труб в Красноярске составляет 1548 километров. Для сравнения: расстояние от Красноярска до Новосибирска — 634 километра.
Тепломагистрали в Красноярске изготовлены из стали, хотя по техническим требованиям, действующим в России, можно использовать трубы из полимеров, но в Сибири этот номер не пройдёт: слишком большие перепады температур. Представьте, когда на улице –30 °С, температура в теплосетях достигает +130 °С.
При этом трубы, которые находятся непосредственно в домах, можно делать из полимеров, потому что в них температура воды не должна превышать +95 °С.
Теперь к нашим тыщёвкам, восьмисоткам и пятисоткам. На пути от ТЭЦ до дома диаметр труб постепенно уменьшается. Так, от ТЭЦ-3 выходит трубопровод самого большого диаметра 1200 мм, и чем ближе к домам, тем меньше диаметр: на подходе к домам диаметр теплотрассы будет уже 300 мм.
Почему так происходит?
Давайте немного порассуждаем. В Красноярске почти 6 тысяч многоэтажек, плюс больницы, школы, различные учреждения, предприятия. 85% из них получают тепло от трёх ТЭЦ.
Чтобы всех согреть, нужно много горячей воды, поэтому тепловыводы от ТЭЦ всегда большого диаметра.
Диаметр трубы на фото составляет 800 мм
Скачать
Чтобы тепло дошло до всех районов, вода идёт под давлением. На ТЭЦ-3 оно составляет 14,5 килограмма на квадратный сантиметр, а на ТЭЦ-2 — 11,4 килограмма на квадратный сантиметр (в одном тепловыводе). Если такой большой поток воды под давлением запустить сразу в дома, тогда трубы внутри дома просто разорвёт.
Самый маленький диаметр магистрального трубопровода равен 400 мм, а межквартального — всего 32 мм. От диаметра трубы зависит количество домов, которые получают тепло, а значит, и количество домов, где тепло будет отключено в случае аварии. Поэтому в ремонтной программе магистральным сетям уделяется приоритетное внимание. Кстати, ремонтировать их дороже, чем квартальные.
Для сравнения: в многоквартирных домах максимальный диаметр труб системы отопления — 108 мм, а минимальный — 15 мм.
Почему тепломагистрали изогнутые, а не прямые?
Там, где теплосети проложены над землёй, можно заметить, что некоторые участки не прямые, а имеют форму буквы П. Это делается не для обхода каких-то конструкций и не для разнообразия.
Ещё в школе мы учили, что при нагревании любое тело расширяется, а при охлаждении оно сжимается. Например, 100-метровая труба диаметром 500 мм, если в ней будет циркулировать вода температурой +70 °С, станет длиннее на 10 см. Подобные изменения изогнут трубу и могут привести к её разрушению.
На фото выше представлен П-образный компенсатор, который позволяет трубе удлиняться в расчётных пределах. Изменение длины примут и разделят между собой сварные швы и отводы труб, а сама труба останется целой и в неизменном положении.
П-образный компенсатор
Здравствуйте! При нагревании трубопроводы системы теплоснабжения имеют свойство удлиняться. И то, насколько они увеличатся по длине, будет зависеть от их начальных габаритов, от материала, из которого они изготовлены, и температуры вещества, транспортируемого по трубопроводу. В потенциале изменение линейных размеров трубопроводов может привести к разрушению резьбовых, фланцевых, сварных соединений, повреждению иных элементов. Разумеется, при конструировании трубопроводов учитывается то, что они удлиняются при нагревании и укорачиваются при наступлении низких температур.
Самокомпенсация теплотрасс и дополнительные компенсирующие элементы
Существует в сфере теплоснабжения такое явление, как самокомпенсация. Под этим понимается способность трубопровода самостоятельно, без помощи специальных устройств и приспособлений, компенсировать те изменения размеров, которые происходят в результате теплового воздействия, за счёт упругости металла и геометрической формы. Самокомпенсация возможна только при наличии в трубопроводной системе изгибов либо поворотов. Но не всегда при проектировании и монтаже имеется возможность для создания большого количества таких «естественных» компенсаторных механизмов. В таких случаях актуально подумать над созданием и установкой дополнительных компенсаторов. Они бывают следующих типов:
Способы изготовления П-образных компенсаторов
В данной статье мы подробно поговорим о П-образных компенсаторах, которые на сегодняшний день являются самыми распространёнными. Данные изделия, покрытые полиэтиленовыми оболочками, можно применять на технологических трубопроводах всех типов. По сути, они являются одним из методов самокомпенсации — на коротком отрезке создаётся несколько изгибов в виде буквы «П», а затем трубопровод продолжает идти по прямой. Такие П-образные конструкции делаются из цельных изогнутых труб, из отрезков труб или отводов, которые сваривают между собой. То есть изготавливают их из того же самого материала, из той же марки стали, что и трубы.
Экономичней всего гнуть компенсаторы из одной цельной трубы. Но если общая длина изделия составляет более 9 метров, то их следует изготовлять из двух, трёх или семи частей.
• В случае, если компенсатор нужно изготовить из двух составных частей, то шов располагается на так называемом вылете.
• Трёхчастная конструкция предполагает, что гнутую «спинку» изделия будут создавать из цельного куска трубы, а потом к ней приварят два прямых отвода.
• Когда частей предполагается семь, то четыре из них должны быть коленцами, а остальные три — патрубками.
Важно помнить и то, что радиус сгиба отводов при заготовке компенсаторов из прямых частей должен быть равен четырём наружным диаметрам трубы. Это можно выразить следующей несложной формулой: R=4D.
Из скольких бы частей не изготавливался описываемый компенсатор, сварной шов всегда желательно располагать на прямом участке отвода, который будет равен диаметру трубы (но не менее 10 сантиметров). Впрочем, бывают ещё и крутозагнутые отводы, где прямые элементы отсутствуют вовсе — в таком случае можно отойти от вышеуказанного правила.
Достоинства и недостатки рассматриваемых изделий
Компенсаторы данного типа специалисты рекомендуют применять для трубопроводов небольшого диаметра — до 600 миллиметров. Участки в виде больших букв «П» на данных трубопроводах при возникновении каких-либо колебаний эффективно гасят их за счёт изменения своего положения по продольной оси. Это как бы не позволяет колебаниям «продвигаться» по теплотрассе дальше. В трубопроводах, требующих разбора для того, чтобы произвести очистку, П-образные компенсаторы дополнительно снабжают присоединительными деталями на фланцах.
П-образные изделия хороши тем, что они не нуждаются в контроле в период эксплуатации. Это их отличает от изделий сальникового типа, для обслуживания которых нужны специальные камеры ответвлений. Однако для обустройства П-образных компенсаторов требуется некоторое пространство, а в плотно застроенном городе оно находится не всегда.
У рассматриваемых компенсаторов, разумеется, есть не только достоинства, но и недостатки. Самый очевидный из них такой – для изготовления компенсаторов дополнительно расходуются трубы, а они стоят денег. Кроме того, установка данных компенсаторов ведёт к тому, что увеличивается общее сопротивление движению жидкости-теплоносителя. Плюс ко всему такие компенсаторы отличают значительные размеры, и потребность в специальных опорах.
Расчёты для П-образных компенсаторов
В России по-прежнему не стандартизированы параметры для П-образных компенсаторов. Их производят в соответствии с нуждами проекта и по тем данным, которые в этом проекте прописываются (тип, размеры, диаметр, материал и т. д.). Но всё-таки определять габариты П-образного компенсатора наобум, конечно, не следует. Специальные расчёты помогут узнать те габариты компенсатора, которые окажутся достаточными для компенсации деформаций теплотрассы из-за температурных перепадов.
При подобных расчётах, как правило, принимаются следующие условия:
• трубопровод изготовлен из стальных труб;
• по нему течёт вода либо пар;
• давление внутри трубопровода не превышает 16 бар;
• температура рабочей среды не более 2000 градусов по Цельсию
• компенсаторы симметричны, длина одного плеча строго равна длине второго плеча;
• трубопровод находится в горизонтальном положении;
• на трубопровод не действует давление ветра и прочие нагрузки.
Как мы видим, здесь берутся идеальные условия, что, разумеется, делает конечные цифры весьма условными и приблизительными. Но такие расчёт всё равно позволяют снизить риск повреждений трубопровода при эксплуатации.
И ещё одно важное дополнение. При расчётах изменения трубопровода под воздействием тепла за основу берётся наибольшая температура перемещаемой воды или пара, а температура окружающей среды, наоборот, выставляется минимальная.
Сборка компенсаторов
Собирать компенсаторы необходимо на стенде или на абсолютно ровной твёрдой площадке, на которой удобно будет производить сварочные работы и подгонку. Начиная работы, нужно точно нанести ось будущего П- участка и установить контрольные маячки для элементов компенсатора.
После изготовления компенсаторов нужно также проверить их размеры — отклонение от намеченных линий должно не превышать четырёх миллиметров.
Монтаж П-образных компенсаторов
Место для П-образных компенсаторов обычно выбирается с правой стороны теплопровода (если смотреть от источника тепла к конечному пункту). Если же справа нет необходимого пространства, то возможно (но лишь в качестве исключения) устроить вылет для компенсатора слева, не меняя в целом расчётные габариты. При таком решении с внешней стороны будет находиться обратный трубопровод, и размеры его окажутся чуть больше тех, что требовались согласно предварительным вычислениям.
Пуск теплоносителя всегда создаёт в трубах из металлов значительное напряжение. Чтобы справиться с ним, П-образный компенсатор в процессе монтажа следует растянуть по максимуму – это увеличит его эффективность. Растяжку делают после установки и фиксации опор с обеих сторон от компенсатора. Трубопровод при растяжке в зонах его приваривания к опорам должен оставаться строго неподвижным. П-образные компенсаторы сегодня растягивают при помощи талей, домкратов и прочих подобных приспособлений. Величину предварительной растяжки компенсирующего элемента (или величину его сжатия) следует обязательно указать в паспорте на теплотрассу и проектных документах.
Если планируется расположение П-образных элементов группами на нескольких трубопроводах, идущих параллельно, то растяжку заменяют такой процедурой, как натяжка труб в «холодном» состоянии. Подобный вариант предполагает и особый порядок проведения монтажных процедур. В данном случае компенсатор прежде всего следует установить на опоры и сварить стыки.
Но при этом в одном из стыков должен остаться зазор, который будет соответствовать заданной растяжке П-компенсатора. Для того, чтобы избежать снижения компенсационной способности изделия и предотвратить перекосы, для натяжения следует воспользоваться стыком, который будет находиться от оси симметрии компенсатора на расстоянии от 20 до 40 трубных диаметров.
Установка опор
Особо стоит сказать об установке опор для П-компенсаторов. Их необходимо смонтировать так, чтобы трубопровод перемещался лишь вдоль продольной оси и никак иначе. В таком случае компенсатор примет на себя все возникающие продольные колебания.
Сегодня для одного П-компенсатора необходимо устанавливать не менее трёх качественных опор. Две из них следует располагать под теми участками компенсатора, которые состыкуются с основным трубопроводом (то есть под двумя вертикальными палочками буквы «П»). Допустимо также монтировать опоры на самом трубопроводе поблизости от компенсатора. Причём между краем опоры и сварным стыком должно быть хотя бы на полметра. Ещё одна опора создаётся под спинкой компенсатора (горизонтальной палочкой в букве «П»), как правило, на особой подвеске.
Если теплотрасса имеет уклон, то боковые части П-образных элементов должны располагаться строго по уровню (то бишь уклон должен соблюдаться). В большинстве случаев компенсаторы в виде буквы «П» устанавливаются горизонтально. Если же компенсатор устанавливается в вертикальном положении внизу обязательно должна быть организована соответствующая дренажная система.
• технические параметры компенсатора, предприятие-изготовитель и год производства;
• расстояние меж опорами, производимая компенсация и величина растяжения;
• температура окружающей атмосферы в период, когда проводились работы, и дата установки.
Что касается, например, компенсирующей способности П-образного изделия, то она имеет чёткую зависимость от ширины, от радиуса изгибов и вылета.
masterok
Мастерок.жж.рф
Хочу все знать
Наверняка каждый, у кого во дворе хотя бы раз раскапывали какие-нибудь трубы, обращал внимание на то, что они зачастую идут прямо не на всем своем протяжении. В одном или нескольких местах коммуникации имеют нехарактерный изгиб, который отнюдь не продиктован необходимостью изменить направление.
Создание изгиба на прямом участке канализационных труб – это всегда дополнительные траты материалов, финансов и человеко-часов. Однако, подобные работы не бесполезные, а вынужденные. Продиктованы они законами физики. Делаются изгибы на прямых участках труб специально для того, чтобы канализационная инфраструктура могла нормально функционировать. Без подобного изгиба трубы будет просто рвать.
Почему такое может случиться? Все дело в тепловом расширении. Когда коммуникации только укладывают, то они находятся в условиях уличной температуры, которая не соответствует эксплуатационным качествам материалов. В дальнейшем, когда по трубам пойдет вода, температура материала, из которого они сделаны, значительно повысится. В зимнее время трубы поставляющие в здания горячую воду нагреваются до 90 градусов по Цельсию.
Под действием такой температуры любая труба начинает расширяться. Для 20-метрового участка при 75 градусном нагреве расширение составит 16.5 мм. Этого более, чем достаточно для того, чтобы деформировать материал и порвать трубу.
Собственно технические изгибы «зигзагом» и нужны для того, чтобы трубе было куда расширяться и гнуться без вреда для конструкции. Подобные участки коммуникаций называют «компенсирующими». Они же нужны еще и для того, чтобы защищать конструкцию от гидроудара при подаче воды.
Расчет температурных удлинений трубопроводов в системах водопровода и отопления
Трубы в системах отопления, а также холодного и горячего водоснабжения, независимо от материала, из которого они сделаны, подвержены температурным удлинениям и сокращениям. Чтобы найти величину линейного изменения длины трубопроводов при их расширении и сужении выполняется расчет. Если им пренебречь и не установить необходимые компенсаторы, то, при открытой прокладке трассы, трубы могут провиснуть или даже станут причиной выхода из строя всей системы. Поэтому расчёт температурных удлинений трубопроводов обязателен и требует профессиональных знаний.
В данной части учебного курса «Системы водоснабжения и шумопоглощающей канализации», при участии специалиста компании REHAU, расскажем:
Необходимость расчета температурных удлинений трубопроводов из полимерных материалов
Температурные удлинения или сокращения трубопроводов происходят под влиянием изменения рабочей температуры, перемещаемой по ним воды, а также температуры окружающей среды. Соответственно, при монтаже нужно обеспечить достаточную степень свободы трубопроводов, а также рассчитать необходимые допуски на увеличение их длины. Часто начинающие застройщики не учитывают эти изменения при монтаже водопроводной и отопительной разводки. Типичные ошибки:
Учет температурных удлинений трубопроводов из полимерных материалов, в частности, из РЕ-Ха, следует производить только при их открытой прокладке. При скрытой прокладке компенсация температурных удлинений происходит за счет изгибов трубопроводов, уложенных в защитной гофротрубе или в теплоизоляции, при изменении направления трассы. В этом случае компенсация удлинений происходит благодаря напряжениям в стяжке или в штукатурке.
Отметим, что стяжка выдерживает напряжение без разрушений, т.к. возникающие усилия очень малы и составляют незначительный процент от имеющегося запаса её прочности. Необходимо только проследить, чтобы при заливке стяжки или оштукатуривании стен раствор не попадал внутрь гофротрубы или под теплоизоляцию. Присоединение труб к водоразборной арматуре производится через настенные угольники, которые прочно закрепляются на строительной конструкции или на специальном кронштейне. В результате — осевые перемещения труб в теплоизоляции или защитной гофротрубе, за счет температурных удлинений, не оказывают усилий на узел присоединения. При присоединении трубопроводов к распределительным коллекторам выполняется поворот под 90° на выходе из стяжки или из-под штукатурки.
При открытой прокладке температурные удлинения полимерных трубопроводов, в частности, трубопроводов из РЕ-Ха, будут очень заметны, т.к. эти трубопроводы имеют большой коэффициент температурного удлинения.
Эта же величина имеет и обратный смысл, т.е. если трубопровод охладить на 1 градус, то коэффициент температурного удлинения покажет, на сколько миллиметров укоротится 1 м трубопровода.
Расчет температурного удлинения трубопроводов из сшитого полиэтилена РЕ-Ха
Температурные удлинения или сокращения трубопроводов происходят из-за изменения рабочей температуры циркулирующей по ним воды, а также температуры окружающей среды. При открытой прокладке трубопровод должен свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода. Например:
Устройство компенсаторов необходимо только при значительных линейных удлинениях трубопроводов. Поскольку система должна быть рациональна, то сначала рассчитывается температурное удлинение трубопровода. Возьмём трубопроводы из сшитого полиэтилена РЕ-Ха. Для расчета нам потребуется:
Таб. 1. Коэффициент температурного удлинения и константа материала для водопроводных труб.
| Тип трубы | Диаметр трубы | Коэффициент температурного удлинения α мм/м·К | Константа материала С |
| Универсальная труба из сшитого полиэтилена РЕ-Ха | 16-63 мм Без фиксирующего желоба | 0.15 | 12 |
| Водопроводная труба из сшитого полиэтилена РЕ-Ха | 16-63 мм Без фиксирующего желоба | 0.15 | 12 |
Температурное удлинение участка трубопровода пропорционально его длине и разнице температур монтажа и максимальной рабочей температуры. Если мы, например, монтируем участок трубопровода горячей воды длиной 10 м, и температура окружающего воздуха, т.е. температура монтажа, составляет 20°С, а максимальная рабочая температура составит 70°С, то температурное удлинение можно посчитать по формуле
ΔL = L • α • ΔТ (t макс. раб. – t монтажа). Где:
Подставляем значения в формулу:
ΔL = L • α • (t макс. раб. – t монтажа) = 10 • 0,15 • (70 – 20) = 75 мм.
Т.е. 10-метровый участок при этом удлинится на 75 мм или 7.5 см. Это приведет к деформации системы и провисанию трубопровода. Данные деформации, прежде всего, нарушают внешний вид системы. Но на значительной длине могут разрушить, прежде всего, крепежные устройства или привести к поломке запорно-регулировочной арматуры или фасонной части. Человеческий глаз способен воспринимать прогиб трубопровода (ΔН), начиная от 5 мм.
Следующий шаг — расчет величины прогиба (провисания) трубопровода.
Расчет прогиба трубопровода и способы компенсации температурных деформаций полимерных трубопроводов
Зная длину участка между хомутами (L) и его длину при максимальной рабочей температуре (L1), прогиб трубопровода определяется с помощью зависимости:
Итого, при температурном удлинении трубопровода на 75 мм на 10-метровом отрезке прогиб составит:
Бороться с температурными деформациями полимерных трубопроводов можно разными способами:
Рассмотрим каждый из этих способов.
Способы компенсации температурных деформаций полимерных трубопроводов
1. Устройство дополнительных хомутов крепления.
За счет устройства дополнительных хомутов крепления предотвращается провисание или прогиб трубопроводов. Рекомендуемое максимальное расстояние между хомутами для полимерных труб из РЕ-Ха приведены в таблице 2.
2. Устройство Г-образного компенсатора.
Г-образные компенсаторы устраиваются так же, как и при прокладке стальных трубопроводов. Устраивать Г-образные компенсаторы на полимерных трубах из РЕ-Ха значительно эффективнее, т.к. эти трубы отличаются высокой эластичностью. При этом, в качестве Г-образных компенсаторов можно использовать места поворота трубопроводов под 90°. Необходимо по формуле, как было описано выше, определить температурное удлинение ΔL от прямого участка перед поворотом. Эта величина влияет на расстояние от трубопровода до строительной конструкции. Расстояние до строительной конструкции должно быть не менее величины ΔL. Кроме этого, необходимо дать трубе возможность свободно изгибаться. Для этого первый хомут крепления, после поворота, следует устанавливать на определенном расстоянии от поворота.
Длина плеча компенсатора, в основном, зависит от материала (константы материала С). Компенсаторы обычно устанавливаются в местах изменения направления трубопровода.
Длина плеча компенсатора определяется по формуле:
Если температурное удлинение составило 75 мм, константа материала С = 12, а диаметр трубопровода равен 25 мм, то длина плеча компенсатора составит:
Г-образный компенсатор – это самое экономичное устройство для компенсации температурных удлинений. Для его устройства не требуется никаких дополнительных устройств и элементов.
3. Устройство П-образного компенсатора.
П-образные компенсаторы устраиваются в тех случаях, когда нежелательна компенсация температурных удлинений на краях участка. Его устраивают, как правило, посередине отрезка трубопровода, и компенсация температурных удлинений направлена к центру отрезка. Основания П-образного компенсатора смещаются к центру равномерно с обеих сторон, поэтому каждая сторона компенсирует половину температурного удлинения ΔL/2. Плечи П-образного компенсатора являются плечами компенсации LBS.
Устройство П-образного компенсатора на полимерных трубах.
4. Фиксирующий желоб как компенсатор температурных удлинений.
Фиксирующий желоб – это ложемент из оцинкованной стали трехметровой длины с отбортовкой по краям. Фиксирующие желоба выпускаются на соответствующие диаметры трубопроводов. Трубопроводы защелкиваются в фиксирующие желоба. При этом фиксирующий желоб охватывает трубу примерно на 60°.
Коэффициент температурного удлинения трубы (α) из сшитого полиэтилена в фиксирующем желобе диаметром от 16 до 40 мм равен 0,04 мм/м·К, что в 3,75 раза меньше, чем у обычных труб из РЕ-Ха.
Фиксирующий желоб легко режется ножовкой или отрезается болгаркой. При этом резать следует по полукруглой части, чтобы не загнуть края. С отрезанной кромки следует удалить заусенцы. На стык фиксирующих желобов надевается короткий обрезок фиксирующего желоба.
5. Использование неподвижных опор
Если компенсацию температурных удлинений необходимо произвести на длинном участке трубопровода, на котором имеется много ответвлений, например, водопроводный стояк в 20-й этажном здании, на каждом этаже которого установлены тройники для поквартирной разводки, то компенсацию температурных удлинений можно произвести с помощью установки неподвижных опор. Для этого с обеих сторон тройника за надвижными гильзами устанавливаются обычные скользящие хомуты.
Хомуты не позволят фасонной части сдвинуться ни вверх, ни вниз. Тем самым длинный участок разбит на много коротких участков, равных высоте этажа, приблизительно 3 м. Как мы помним из формулы расчета, температурное удлинение прямо пропорционально длине участка, а мы ее сократили. При устройстве неподвижных опор на каждом этаже на стояке не потребуется устройства никаких других компенсаторов температурного удлинения трубопровода. Если есть, например, «холостой» стояк, у которого по всей длине нет боковых отводов, то можно искусственно установить на этом стояке, например, равнопроходные муфты и на них сформировать неподвижные опоры, как было описано выше. Чтобы уменьшить затраты, можно установить на стояке Г или П-образные компенсаторы или поставить сильфонный компенсатор.
Полимерные трубопроводы для устройства современной открытой водопроводной и отопительной разводки
Современные металлополимерные трубопроводы — это труба из сшитого полиэтилена, в которой слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха. У таких трубопроводов наименьший коэффициент температурного удлинения, т.к. алюминиевый слой компенсирует температурные удлинения и удерживает внутренний полимерный слой от температурных деформаций.
Температурное удлинение участка металлополимерного трубопровода длиной 10 м при температуре окружающего воздуха (т.е. температуре монтажа 20 °С и максимальной рабочей температуре 70 °С) составит всего:
ΔL = L • α • (t макс. раб. – t монтажа) = 10 • 0,026 • (70 – 20) = 13 мм.
Поэтому металлополимерные трубопроводы позиционируются как трубопроводы для открытой прокладки. Но вариант с металлополимерными трубами окажется дороже, т.к. эти трубы стоят больше, чем обычные трубы из сшитого полиэтилена РЕ-Ха.
Заключение
Нельзя игнорировать температурные удлинения трубопроводов из сшитого полиэтилена РЕ-Ха при открытой прокладке водопроводной разводки и монтаже отопительной системы. Для компенсации удлинений следует применять один из вышеперечисленных в статье методов, строго соблюдая рекомендации производителя.











