для чего нужна формула виета
Теорема Виета
После того, как вы внимательно изучите, как решать квадратные уравнения обычным образом с помощью формулы для корней можно рассмотреть другой способ решения квадратных уравнений — с помощью теоремы Виета.
Перед тем, как изучить теорему Виета, хорошо потренируйтесь в определении коэффициентов « a », « b » и « с » в квадратных уравнениях. Без этого вам будет трудно применить теорему Виета.
Когда можно применить теорему Виета
Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.
Приведенное квадратное уравнение — это уравнение, в котором старший коэффициент « a = 1 ». В общем виде приведенное квадратное уравнение выглядит следующим образом:
Обратите внимание, что разница с обычным общим видом квадратного уравнения « ax 2 + bx + c = 0 » в том, что в приведённом уравнении « x 2 + px + q = 0 » коэффициент « а = 1 ».
Если сравнить приведенное квадратное уравнение « x 2 + px + q = 0 » с обычным общим видом квадратного уравнения « ax 2 + bx + c = 0 », то становится видно,
что « p = b », а « q = c ».
Теперь давайте на примерах разберем, к каким уравнениям можно применять теорему Виета, а где это не целесообразно.
Так как « a = 1 » можно использовать теорему Виета.
Приведем уравнение к общему виду:
Так как « a = 3 » не следует использовать теорему Виета.
Приведем уравнение к общему виду:
Так как « a = −1 » не следует использовать теорему Виета.
Как использовать теорему Виета
Теперь мы готовы перейти к самому методу Виета для решения квадратных уравнений.
Теорема Виета для приведённых квадратных уравнений « x 2 + px + q = 0 » гласит что справедливо следующее:
Чтобы было проще запомнить формулу Виета, следует запомнить:
«Коэффициент « p » — значит плохой, поэтому он берется со знаком минус ».
Так как в этом уравнении « a = 1 », квадратное уравнение считается приведённым, значит, можно использовать метод Виета. Выпишем коэффициенты « p » и « q ».
Запишем теорему Виета для квадратного уравнения.
| x1 + x2 = − 4 |
| x1 · x2 = −5 |
Методом подбора мы приходим к тому, что корни уравнения « x1 = −5 » и « x2 = 1 ». Запишем ответ.
Рассмотрим другой пример.
Старший коэффициент « a = 1 » поэтому можно применять теорему Виета.
| x1 + x2 = − 1 |
| x1 · x2 = −6 |
Методом подбора получим, что корни уравнения « x1 = −3 » и « x2 = 2 ». Запишем ответ.
Если у вас не получается решить уравнение с помощью теоремы Виета, не отчаивайтесь. Вы всегда можете решить любое квадратное уравнение, используя формулу для нахождения корней.
Деление уравнение на первый коэффициент
Рассмотрим уравнение, которое по заданию требуется решить, используя теорему Виета.
Сейчас в уравнении « a = 2 », поэтому перед тем, как использовать теорему Виета нужно сделать так, чтобы « a = 1 ».
Для этого достаточно разделить все уравнение на « 2 ». Таким образом, мы сделаем квадратное уравнение приведённым.
Теперь « a = 1 » и можно смело записывать формулу Виета и находить корни методом подбора.
| x1 + x2 = − (−8) |
| x1 · x2 = −9 |
| x1 + x2 = 8 |
| x1 · x2 = −9 |
Методом подбора получим, что корни уравнения « x1 = 9 » и « x2 = −1 ». Запишем ответ.
Бывают задачи, где требуется найти не только корни уравнения, но и коэффициенты самого уравнения. Например, как в такой задаче.
Корни « x1 » и « x2 » квадратного уравнения « x 2 + px + 3 = 0 » удовлетворяют условию « x2 = 3x1 ». Найти « p », « x1 », « x2 ».
Запишем теорему Виета для этого уравнения.
По условию дано, что « x2 = 3x1 ». Подставим это выражение в систему вместо « x2».
| x1 + 3x1 = −p |
| x1 · 3x1 = 3 |
| 4x1 = −p |
| 3x1 2 = 3 |(:3) |
| 4x1 + p = 0 |
| x1 2 = 1 |
| p = −4x1 |
| x1 2 = 1 |
Решим полученное квадратное уравнение « x1 2 = 1 » методом подбора и найдем « x1 ».
Мы получили два значения « x1 ». Для каждого из полученных значений найдем « p » и запишем все полученные результаты в ответ.
Теорема Виета в общем виде
В школьном курсе математики теорему Виета используют только для приведённых уравнений, где старший коэффициент « a = 1 », но, на самом деле, теорему Виета можно применить к любому квадратному уравнению.
В общем виде теорема Виета для квадратного уравнения выглядит так:
x1 + x2 =
| ||
x1 · x2 =
|
Убедимся в правильности этой теоремы на примере. Рассмотрим неприведённое квадратное уравнение.
Используем для него теорему Виета в общем виде.
x1 + x2 =
| ||
x1 · x2 =
|
| x1 + x2 = −1 |
| x1 · x2 = −6 |
Методом подбора получим, что корни уравнения « x1 = −3 » и « x2 = 2 ». Запишем ответ.
В заданиях школьной математики мы не рекомендуем использовать теорему Виета в общем виде.
Другими словами, реальную пользу теорема Виета приносит только для приведённых квадратных уравнений, в которых « a = 1 ». Именно в таких случаях она не усложняет жизнь, а позволят без дополнительных расчетов быстро найти корни.
Теорема Виета, формулы Виета
В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.
В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.
Формулировка и доказательство теоремы Виета
Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны — b a и c a соответственно.
Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.
Теперь давайте перейдем ко второму соотношению.
Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:
Приведем еще одну формулировку теоремы Виета.
Теорема, обратная теореме Виета
Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.
Теорема, обратная теореме Виета, доказана.
Примеры использования теоремы Виета
Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.
Решение
Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.
Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.
Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.
Решение
Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.
Решение
Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:
Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.
Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?
Решение
Ответ: Нет
При каких значениях параметра r квадратное уравнение x 2 + ( r + 2 ) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.
Решение
Формулы Виета
Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.
Получить формулы Виета нам помогают:
Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.
Теорема Виета, обратная формула Виета и примеры с решением для чайников
Теорема Виета помогает решать квадратные уравнения путём подбора. В этой статье даны определения, доказательства, формулы и примеры решений квадратных уравнений для чайников.
Что такое теорема Виета
Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета
Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).
Если более подробно, то т еорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.
При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.
Нужна помощь в написании работы?
Доказательство теоремы Виета
Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно,
.
Допустим у нас есть уравнение: . У этого уравнения есть такие корни:
и
. Докажем, что
,
.
По формулам корней квадратного уравнения:
,
.
1. Найдём сумму корней:
.
Разберём это уравнение, как оно у нас получилось именно таким:
=
.
=
=
.
=
=
. Сокращаем дробь на 2 и получаем:
.
Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.
2. Найдём произведение корней:
=
= =
=
=
=
.
Докажем это уравнение:
.
.
.
Теперь вспоминаем определение квадратного корня и считаем:
=
.
=
.
.
Вот мы и доказали соотношение для произведения корней по теореме Виета.
ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.
Теорема, обратная теореме Виета
По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.
Если числа и
такие:
и
, тогда они и есть корнями квадратного уравнения
.
Доказательство обратной теоремы Виета
Шаг 1. Подставим в уравнение выражения для его коэффициентов:
Шаг 2. Преобразуем левую часть уравнения:
;
.
или
. Откуда и получается:
или
.
Примеры с решениями по теореме Виета
Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.
. Получается:
Выразим сумму квадратов корней через их сумму и произведение:
.
Решите уравнение . При этом не применяйте формулы квадратного уравнения.
У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.
и
Задание
Найдите, если это возможно, сумму и произведение корней уравнения:
Решение
. Так как дискриминант меньше нуля, значит у уравнения нет корней.
Ответ
Задание
Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:
Решение
По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.
Сумма корней нового уравнения будет равна:
, а произведение
.
По теореме, обратной теореме Виета, новое уравнение имеет вид:
Ответ
Получилось уравнение, каждый корень которого в два раза больше:
Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член
– число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.
А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.
Полезные источники:
