для чего нужна регенерация фильтра в котельной
Регенерация
Регенерация начинается с взрыхления катионита. Взрыхление катионита производится после выключения фильтра из работы подачей воды в фильтр снизу вверх. Взрыхление может производиться исходной водой из трубопровода сырой воды или насосом из бака взрыхления. Для этого открывают задвижки на входе взрыхляющей воды в фильтр и на выходе ее из верхнего дренажа. Расход воды на взрыхление регулируется задвижкой на верхнем дренаже, т. е. на сбросе воды в канализацию. Длительность взрыхления составляет 15— 20 мин. Если через 20 мин после начала взрыхления не наступило заметного осветления воды, то взрыхление следует продолжать. Во время взрыхления необходимо вести контроль за вытекающей водой из верхнего дренажа, чтобы в ней отсутствовали рабочие зерна катионита (свыше 0,2—0,3 мм), быстро оседающие на дно колбы. После окончания взрыхления задвижки на верхнем дренаже и подаче взрыхляющей воды следует закрыть. Во время взрыхления фильтр должен быть постоянно с водой (проверяется из воздушника).
Подача регенерационного раствора соли осуществляется непосредственно в водяную подушку фильтра без спуска ее. Регенерациоиный раствор соли готовится двумя способами:
1) в схеме с сухим хранением соли — загружается определенное количество соли в солерастворитель, подается вода для растворения соли и затем открывается задвижка па выходе раствора из солерастворителя на фильтры;
Регенерационный раствор по солевому трубопроводу поступает в фильтр сверху вниз, для чего необходимо открыть задвижки на входе раствора соли в фильтр и на нижнем дренаже. Скорость пропуска регенерационного раствора соли 3—5 м/ч, длительность —20—25 мин. Для каждого типоразмера фильтров на регенерацию дается строго определенное количество соли, установленное при наладке. После пропуска раствора соли все ранее открытые задвижки закрывают сначала на выходе из фильтра, затем на входе.
Отмывка фильтра производится для удаления из него продуктов регенерации и остаточной соли. При отмывке открывают задвижки на входе исходной воды в фильтр, затем на нижнем дренаже. Скорость пропуска воды при отмывке в течение первых 20 мин должна быть не более 5 м/ч, затем — 10—12 м/ч.
Если есть бак для взрыхления фильтров, то при жесткости отмывочной воды ниже исходной отмывка производится в баке для взрыхления фильтров, эта вода затем используется при взрыхлении, что приводит к улучшению работы фильтра и экономии расхода соли, так как отмывочная вода значительно мягче исходной и содержит избыток соли (особенно при отмывке фильтров II ступени).
Система ХВО для котельной
В современных котельных перед запуском проводят процесс водоподготовки для паровых и водогрейных котлов. Это обязательная процедура, в которой нуждается всё, без исключения, имеющееся оборудование.
Указанное мероприятие служит профилактической мерой, позволяющей предотвратить формирование минеральных отложений на внутренних поверхностях нагревательных систем. Систематически проводящаяся водоподготовка для котельных служит залогом бесперебойной работы тепловых установок, с допустимым сроком в течение отопительного сезона.
Задачи водоподготовки котельных
Вода является необходимым атрибутом для формирования жизни на планете, так как обладает способностью растворять в себе различные минеральные вещества. Кроме этого она способна выполнять различные вспомогательные функции в системах жизнеобеспечения. Ее используют в качестве дешевого теплоносителя, наполняющего системы трубопроводов парового и водогрейного отопления.
Однако, благодаря своим химическим свойствам, вода переносит множество всевозможных элементов, способных осаждаться при нагревании. Это свойство создает определенные сложности для рабочего режима отопления, что становится причиной систематического технического обслуживания узлов, участвующих в процессе нагревания.
Примеси, осаждающиеся на стенках трубопроводов, условно разделяют на следующие группы:
Каждый из представленных типов примесей может стать причиной повреждения оборудования и отдельных узлов отопительных установок. Такой состав воды может привести как к выходу из строя агрегата, так и к снижению эффективности работы отопления. По этой причине вода, использующаяся в качестве теплоносителя, должна проходить предварительную фильтрацию от механических примесей. Данная мера поможет предотвратить преждевременное засорение насосов циркуляции и запорных механизмов.
Однако процесс фильтрации, который предусматривает водоподготовка для котельной, позволяет исключить из состава теплоносителя только нерастворенную в воде часть примесей. Это могут быть песчинки и глина, а также осадки оксида железа, образованные в результате взаимодействия влаги со стальными поверхностями.
Тем не менее, вода сохранит растворенные вещества, которые проявятся в процессе нагревания, приведя к таким последствиям как:
Указанные проявления могут привести к частичному уменьшению внутреннего диаметра трубопровода или к его полному засорению. Кроме этого существует вероятность образования воздушных пробок и появления повреждений на стальных поверхностях.
Требования к питательной воде котлов отопления
Все котельные могут работать по двум принципам – либо они паровые, либо водогрейные. Многое также зависит от типа агрегата, мощности и режима температур, в пределах которых осуществляется работа. Для каждого случая изменяются требования к составу используемой воды.
По этой причине степень очистки воды может иметь различные требования. Состояние теплоносителя должно обеспечивать бесперебойную работу системы на продолжительном участке времени, исключая засорения и риск возникновения коррозийных образований.
Главный показатель состояния теплоносителя это его жесткость, которая условно обозначается – pH, так как определяет активность растворенного в растворе водорода.
Для приведения химического состояния воды, в системах водоподготовки оборудованных для котельной, к требуемым параметрам принято проводить следующие этапы очистки:
Для всех систем на первом этапе проводят механическую очистку, которая позволяет извлечь из воды все нерастворенные вещества. В зависимости от исходного состояния теплоносителя, эта процедура может повторяться несколько раз.
Способы ХВО для котельных
Смягчение воды
Процесс смягчения, предусмотренный в ходе проведения химводоподготовки для водогрейных и паровых котлов, имеет несколько последовательных этапов. Для начала воду пропускают через катионит в натриевой форме – это синтетический материал, состоящий из сополимера стирола содержащего дивинилбензол. Такая процедура позволяет произвести замещение солей жесткости натриевыми солями.
Плюс ко всему, в результате химических реакций, происходит истощение емкости смол, поддающихся ионообменным процессам. Чем выше изначальная жесткость воды, тем быстрее активная смола утрачивает величину своей емкости. После нейтрализации смол управляющий клапан, расположенный на фильтре, запускает процедуру регенерации.
Регенерация воды
На этапе регенерации подготовленный теплоноситель разводят 26-ти процентным раствором натриевой соли. Для этого ионный фильтр комплектуется отдельным баком, в котором готовят солевой раствор. Кроме этого очистные установки обеспечиваются дозирующими комплексами, осуществляющими реагентную обработку жидкости.
Для этого используют насосы с дозаторами, которые вводят в состав теплоносителя АМИНАТ КО 2 или КО 5 из отдельных резервуаров. Эта процедура позволяет снизить концентрацию кислорода и сбалансировать показатель pH. Установки ХВО настроены на непрерывный цикл работ, обеспечивая котельные установки безопасным теплоносителем круглосуточно.
Журнал по водоподготовке
Эксплуатация котлов водогрейного или парового принципа действия сопровождается систематическим снятием определенных показаний с занесением в эксплуатационный журнал. Это техническая документация, которая ведется в хозяйстве каждой котельной.
На основе записей в журнале по водоподготовке котельной составляются выводы, определяющие качественный показатель теплоносителя, подаваемого в установку в заданном временном интервале. Для этого заполняемый бланк содержит сведения о времени продувки и показаниях проб. Каждая проба демонстрирует состав воды и соотношение рабочих характеристик.
Образец журнала вы можете скачать здесь.
От качества воды, которой подпитывают котел в процессе работы, зависит длительность эксплуатации устройства и рабочие характеристики его основных элементов. Повышение негативных составляющих в составе теплоносителя приводит к преждевременному выходу из строя агрегата или отдельных его частей.
В отдельной графе (32) указывают:
Эти показатели снимаются при каждой остановке агрегата для проведения технического обслуживания или ремонтных (монтажных) работ. А также с их помощью составляется техническое задание для предстоящего рабочего периода.
Натрий катионитовый фильтр: устройство, принцип работы и его регенерация
Принцип работы натрий катионитового фильтра
Чтобы сделать воду более мягкой, чтобы стенки не зарастали неприятным проблемным налетом, нужно начинать с обработки воды. Убрать из нее лишнее, можно разными способами. На сегодня групп таких методов всего две:
Каждый из предложенных методов может похвастаться, как достижениями, так и плохими сторонами. Идеального метода умягчения любого водного ресурса до сих пор не изобрели, и потребителю приходится выбирать, голосуя рублем за тот или иной прибор.
Старейшим прибором-умягчающим воду остается ионообменный фильтр. Устройство у него простое и работает он на доступном принципе. В состав такого устройства входят следующие элементы:
Бак для восстановительной соли
Возможно дополнительный корпус очиститель
Рассматривая саму работу прибора, нужно понимать отличия между прибором для домашнего использования и прибором для промышленных нужд. Секрет состоит в том, что при промышленном использовании устройство может быть многоступенчатым и занимать много места. В квартире же такой прибор можно встретить в виде кувшина. Иногда это может быть магистральный подвид. Поскольку в быту его используют для производств, прежде всего, воды для внутреннего потребления в пищу и питье, то замена картриджа здесь будет постоянным процессом. На производстве питьевое качество не обязательно и тогда картриджи подвергаются восстановлению. Na натрий катионитовый фильтр в таких цепочках может быть многокорпусным. Пока один картридж приводят в рабочее состояние, другие за него работают.
Такого типа прибор относится к группе химических очистителей. У любого потребителя возникнет вопрос – как же так получается, что производство питьевой воды связано с химикатами? Но процесс реакции здесь заложен в восстановлении, и при производстве питьевой воды картридж меняют, а не восстанавливают, потому соляные растворы в питьевую воду не попадают.
Что же касается принципа работы натрий катионитового фильтра ФИПА, то это специально разработанная гелиевая смола, вся напрочь состоящая из натриевых шариков. Именно таким наполнителем набивают картридж, и он занимается удержанием вредных минералов. Способствует этому бурная реакция между натрием и солями, образующими корку. Кальций и магний липнет к катиониту, как магнит. Так что ионный обмен – это сердце na катионитового фильтра принцип работы его. Когда встречаются грязная минеральная вода и смоляные шарики, переполненные натрием происходит быстрая замена. И для данной реакции ничего дополнительного подключать не нужно. Исключительно быстрая, естественная реакция.
Натрий без проблем уступает свое место в картридже вредным солям, а они прилипают к основе очень основательно. Но, тем не менее, картридж можно вновь вернуть в работу, и без особых усилий. При этом воду греть не нужно, не нужно какие-то растворители добавлять, чтобы ионообменный процесс происходил. В этом простота и удобство данного устройства и состоит. Он работает сам по себе.
Назначение и устройство

Ведь при плотном, практически гипсовом покрытии, даже обычное дно кастрюли начинает перегреваться. В саму кастрюлю в воду находящуюся в ней тепло почти не идет, при этом дно раскалено до предела. Постоянно работать в таком режиме даже закаленный чугун не сможет. Он постепенно начнет плавиться, а если материал будет другой, то возможны разрывы. Если потребитель хоть раз видел разорванные железные трубы, то чаще всего причина таких разрыв перегрев, в следствии применения «плохой» воды.
Na катионитовый фильтр – это простая в техническом плане конструкция. Рассмотреть ее можно на примере стандартного питьевого кувшинного очистителя. Корпус пластмасса, прозрачная причем, чтобы потребители видели количество набираемой воды. Внутри еще один резервуар, к которому прикручивают съемный картридж. Внутри него гелиевая натриевая смола и располагается. Пропускная способность у такого прибора не самая высокая, но для потребления семьи из трех человек, вполне достаточная. Завершает картину крышка. В резервуар заливают воду, она просачивается в корпус через фильтрующий картридж. Ничего лишнего, максимальная простота и доступность.
Если прибор представляет собой целую водоподготовительную систему, то там есть блок управления, восстановительные баки. И устройство само следит, как картридж засоряется. Подается сигнал, вода идет по обводному каналу. Картридж система вынимает сама и переносит в бак с восстановителем, где уже есть растворенный солевой раствор. Нагрузка на другие фильтры в это время увеличивается. Но на этом система и работает.
Аналоги: магнитный и электромагнитный фильтр

Самыми популярными аналогами дорогого для магистрального обслуживания ионизатора являются два типа очень схожих между собой фильтра, работающих на основе силы воздействия магнитного поля. Таких фильтрующих установок на рынке два подвида. Причем один практически не используется, а другой очень даже и строго по прямому назначению. У магнитного фильтра слишком много ограничений, чрезвычайная чувствительность не дала занять свое место на рынке.
Ученые долго пытались понять, как и где просчет, почему такие возможности, которые дает силовая обработка, не используются полностью? Только синтез электричества и магнитного воздействия дал исчерпывающий ответ. Только усиление сигнала за счет электричества помогло сделать поле более долговечным и сильным. Под таким влиянием соли вредностей начинали менять свою форму и размеры. Трансформировавшись, стремление к осадку у солей осталось. Но новая форма позволила им только качественно устранять с поверхностей самый осадок. И плюсом данного эффекта стал тот факт, что происходит все на ионном уровне, и значит, поверхности останутся чистыми и не поврежденными. Достать в неудобные места и проходы бывает очень сложно, а с такой обработкой проблема отпадет сама собой. Так что н катионитовые фильтры не единственные в своем роде уникальные умягчители, есть еще приборы, которые еще и внутренние поверхности поддержат в чистоте, без усилий со стороны человека.
У просто магнитного чистильщика большим минусом был тот факт в работе, что положительный эффект от облучения полностью гасился простыми рабочими моментами. Вода текла по трубам слишком быстро или просто была в застое. Температура нагрева воды была слишком высокой. Из-за этого эффект пропадал.
Регенерация na натрий катионитовых фильтров
Самым уязвимым местом фильтров натрий катионитовых фипа является их невозможность работать непрерывно, без каких-либо затрат и обслуживания. Они требуют восстановления и частого. И чем более загрязненная вода, тем чаще придется менять картриджи или восстанавливать. Замены делают при производстве питьевой воды, восстанавливают во всех остальных случаях.
Происходит регенерация натрий катионитовых фильтров солью восстановителем прямо тут же в установке, без отрыва от основного процесса водоподачи и очистки воды. Для этого делают установку многоступенчатой и снабжают каждый фильтр баком-восстановителем. Есть пульт управления, куда посылает система сигнал, как только картридж забивается. Настроить период замены можно самостоятельно. Выставляется либо период времени или же количество очищенных литров. По истечении срока, автоматически подача воды прекращается. Эксплуатация и регенерация прибора солью полностью останавливается, именно этой части, что должна быть восстановлена. Загрязненный картридж перемещают в бак с раствором-восстановителем. Так, же как натрий оставляет свое место солям, точно также соли вымываются из картриджа под напором большого количества натриевого раствора. Так что восстанавливают силу очистную таких катионитовых фильтров для воды с помощью сильного соляного раствора. Только соль в цене больше специализированная, с высоким содержанием натриевых веществ. Купить ее можно везде, стоит она мало, но большой расход делает процесс восстановления картриджей недешевым. Особенно, если с водой работают круглосуточно и картриджи засоряются очень быстро.
Эксплуатации и обслуживание
Работает натриево катионитовый фильтр ФИПА на умягчение лучше всех, но необходимость его постоянно приводить к первоначальному виду делает очень неудобным. Да и в практически забитом картридже, качество очистки разительно отличается от чистки свежим картриджем. Сам прибор по цене не очень дорогой, чем и соблазняет потребителей, но в дальнейшем многие разочаровываются, т.к. постоянные замены складываются во внушительную сумму затрат. Для получения питьевой воды такой прибор подходит, а вот при обработке больших объемов и с высоким показателем известковости, его лучше не эксплуатировать. Очень быстро можно устать от этих постоянных хлопот. Очень сильно такие труды напоминают чистки поверхностей. Разве только поверхности не портятся, а трудозатраты не меньше.
Для чего нужна регенерация фильтра в котельной
В технологии водоподготовки применяются два основных процесса для удаления из воды ионизированных примесей: катионирование и анионирование. В зависимости от обменного иона процессы и аппараты называют: натрий-катионирование, натрий-катионитный фильтр; H (водород)-катионирование, H-катионитный фильтр; OH-анионирование, OH-анионитныйт фильтр. Полученная в этих процессах вода соответственно называется: Na-катионированная вода, H-катионированная вода, OH-анионированная вода. Процесс Na-катионирования имеет самостоятельное значение и используется для умягчения воды, в то время как процессы H- и OH-ионирование реализуются совместно в схемах обессоливания воды.
Процесс регенерации натрий катионитных фильтров состоит из следующих циклов:
Цикл 1 — Взрыхление обратным током воды. Неочищенная вода снизу слоя фильтрующей засыпки в направлении, противоположном току воды, взрыхляет («поднимает») её и вымывает накопленные механические загрязнения. Загрязненная вода поступает в дренаж.
В работе H-катионитного фильтра можно выделить два основных периода:
Полное поглощение всех катионов.
Работа фильтра до проскока ионов Na + или ионов жесткости зависит от технологической схемы его использования, соответственно изменяется его рабочая обменная емкость при работе до проскока ионов Na + или жесткости.
Ограничение концентрации раствора H2SO4 связано с возможностью выделения на зернах регенерируемого катионита трудно растворимого CaSO4. Следующим мероприятием для борьбы с загипсовыванием катионита является ограничение времени контакта регенерационного раствора с катионитом, что реализуется на практике увеличением скорости пропуска 1.5% раствора H2SO4 до не менее 10 м/ч.
Высокое значение pH в зоне обмена на анионите способствует диссоциации слабых кислот H2CO3 и H2SiO3 и переводу их в ионизированное состояние, поэтому они также могут участвовать в реакциях анионного обмена, но лишь при использовании сильноосновных анионитов:
ROH + H + + HCO 3- → RHCO 3 + H2O,
Регенерация анионитных фильтров производится 4%-ным раствором NaOH, при этом происходят следующие реакции:
Вода используется практически в каждом промышленном процессе, ее чистота и качество играет важную роль в производстве, поэтому к качеству воды предъявляются высокие требования.
Вода уникальна по составу в зависимости от источника и практически всегда требует обработки.
Системы очистки, обезжелезивания и умягчение воды +375 (29) 657-19-00
Вы здесь
Регенерация систем обезжелезивания и умягчения воды – основные моменты и неисправности
В данной теме мы рассмотрим работу станции обезжелезивания и умягчения воды в период их регенерации (восстановления) и какие возможные неисправности могут привести к сбою работы системы очистки.
Как известно в рабочем режиме фильтрации (сервиса) вода в реагентных системах проходит через слой фильтрующего материала и в зависимости от типа материала происходит ионный обмен или каталитическое окисление.
У разных производителей блоков управления могут быть различные предустановленные настройки регенерации. У некоторых они могут вноситься самостоятельно и корректироваться как угодно. Обобщая можно выделить 5 циклов регенерации:
1. – обратная промывка (1-я обратная промывка)
2. – регенерация (медленная промывка)
3. – обратная промывка (2-я обратная промывка)
4. – прямая промывка (быстрая промывка)
5. – приготовление раствора (пополнение реагентного бака)
Первая обратная промывка необходима для подготовки фильтрующей загрузки к регенерации. Вода подается по трубе внутри корпуса фильтра и поднимается снизу вверх, тем самым как бы вспушивая загрузку.
В каталитически-окислительных станциях обратная промывка вымывает накопившиеся твердые частицы, окислы железа, марганца в дренаж, тем самым очищая фильтрующий материал. В этом режиме важно, что бы поток воды был достаточно сильным, что вспушивать загрузку. Чем тяжелее загрузка, тем выше должна быть скорость потока. Скорость потока определяется давлением воды в водопроводе и диаметром трубопровода. Для станций умягчения давления должно быть не менее 2-2,5 атм., для станций обезжелезивания 2,5-3 атм. Недостаточное давление, или сбой работы насосного оборудования (например, сдулась и, или порвалась резиновая груша в гидроаккумуляторном баке и насос часто включается и выключается) могут быть причинами плохой обратной промывки системы очистки и как следствие снижению ресурса работы фильтрующей загрузки между регенерациями. Чаще всего это касается станций обезжелезивания, где используются более тяжелые фильтрующие материалы.
В режиме регенерация станция выпивает рассол (раствор) из реагентного бака. Это самый длительный цикл. Реагентный раствор может поступать на фильтрующий материал как сверху вниз (рисунок), так снизу вверх – в зависимости от возможностей блока управления.
На третьем цикле происходит 2-я обратная промывка. Поток воды вспушивает загрузку и вымывает образовавшиеся в процессе регенерации соединения солей в дренаж. По продолжительности обратная промывка занимает 5-10минут в зависимости от размеров станции. Причина возможных сбоев на данном цикле, как и при первой обратной промывке – слабое давление в водопроводе. Характерный признак – это соленая вода на утро после регенерации для станций умягчения или розоватая для систем обезжелезивания. Если насосное оборудование работает исправно, а остатки реагента присутствуют в воде, необходимо увеличить длительность четвертого цикла на 2-3 минуты.
Четвертый цикл – прямая промывка или быстрая промывка – вода подается на фильтрующий материал, как и при обычной фильтрации воды. Фильтрующая загрузка уплотняется и подготавливается для работы. Неисправностей на данном цикле практически не бывает.
Пятый цикл – долив воды в реагентный бак для приготовления раствора для следующей регенерации. На данном цикле необходимо убедиться, что уровень раствора в баке увеличивается. Необходимо немного подождать, так как происходит это медленно. Если в баке много соли и невидно уровня воды, то можно снять крышечку белого цилиндра (шахта в солевом баке с поплавковым механизмом) и наблюдать увеличение уровня через нее. Если вода не поступает в бак, необходимо проверить инжектор (смотреть 2 цикл) и реагентную линию. Возможно, в баке уже достаточно воды и поплавковый механизм перекрыл ее поступление.
Каждый цикл выполняет свою функцию. Правильность работы системы очистки при регенерации проверяется при годовом сервисном обслуживании. Регенерация проводится в ускоренном режиме, достаточном для проверки работоспособности каждого цикла.
Если причины неисправности выявить не удалось, вы можете обратиться за консультацией по телефону +375(29)657-19-00












