для чего нужно обогащение урана
Обогащение урана
Обогащение урана осуществляется двумя основными методами разделения изотопов: газодиффузионным методом и методом газового центрифугирования. В России, Великобритании, Германии, Нидерландах и Японии применяется метод центрифугирования, при котором газ UF6 приводится в очень быстрое вращение и из-за разницы в массе молекул происходит разделение изотопов, которые затем переводятся обратно в металл. В отходах остаётся только 0,2–0,3 % 235 U. [1]
В 1992 году австралийской компанией Silex разработана технология обогащения урана путем заряда молекул UF6 с изотопом 235 U в луче лазера. С 2006 года работы по технологии Silex ведет компания General Electric, в конце 2011 года успешно завершившая испытания оборудования для обогащения урана. Технология Silex должна позволить существенно снизить стоимость топлива для энергетических реакторов. Предполагается строительство установки по технологии Silex в г. Уилмингтон, штат Северная Каролина. На площади 5,5 га может разместиться установка, обеспечивающая топливом четыре десятка ядерных энергоблоков.
Примечания
См. также
Ссылки
Шрекингерит
Полезное
Смотреть что такое «Обогащение урана» в других словарях:
ОБОГАЩЕНИЕ ЯДЕРНОГО ТОПЛИВА — ОБОГАЩЕНИЕ ЯДЕРНОГО ТОПЛИВА, отделение хорошо расщепляемого изотопа урана, урана 235, от преобладающего изотопа, урана 238. Газообразный фторид урана (VI) проходит диффузионное разделение, при котором используется ряд перегородок с… … Научно-технический энциклопедический словарь
ОБОГАЩЕНИЕ — (1) дутья введение кислорода в атмосферный воздух для интенсификации технологического процесса при плавке металла (см. ), (2) О. полезных ископаемых совокупность различных методов обработки руд чёрных, цветных и благородных металлов, угля и др.… … Большая политехническая энциклопедия
Обогащение урановой руды — Uranium ore processing совокупность процессов первичной обработки минерального урансодержащего сырья, имеющих целью отделение урана от других минералов, входящих в состав руды. При этом не происходит изменения состава минералов, а лишь их… … Термины атомной энергетики
обогащение урановой руды — Совокупность процессов первичной обработки минерального ураносодержащего сырья, имеющих целью отделение урана от других минералов, входящих в состав руды. При этом не происходит изменения состава минералов, а лишь их механическое разделение с… … Справочник технического переводчика
Радиометрическое обогащение руды — Радиометрическое обогащение руды процессы переработки руд, основанные на взаимодействии различных видов излучений с веществом. В технологии радиометрического обогащения руд выделяются два вида процессов: Радиометрическая сортировка … … Википедия
Магнитное обогащение полезных ископаемых — (англ. magnetic separation, magnetic concentration of minerals; нем. magnetische Aufbereitung f der Bodenschätze) обогащение полезных ископаемых, основывающееся на действии неоднородного магнитного поля на минеральные частички с… … Википедия
Химическое обогащение — (a. chemical refining; н. chemische Aufbereitung; ф. concentration par voie chimique, enrichissement chimique; и. tratamiento quimico, preparacion quimica, elaboracion quimica) технология первичной переработки руд, коллективных и… … Геологическая энциклопедия
УРАНОВАЯ ПРОМЫШЛЕННОСТЬ — Уран это основной энергоноситель ядерной энергетики, вырабатывающей около 20% мировой электроэнергии. Урановая промышленность охватывает все стадии производства урана, включая разведку месторождений, их разработку и обогащение руды. Переработку… … Энциклопедия Кольера
Ядерное топливо — почти готово к работе … Википедия
Будьте всегда
в Настроении
От Masterweb
Различные новостные источники регулярно вещают со своих страниц о том, что то или иное государство начало обогащать уран. Почему это так беспокоит мировую общественность, что в этом страшного и как происходит это самое обогащение?
Чем же так страшен обогащенный уран
На рисунке представлено схематическое изображение простейшей ядерной боеголовки. Заготовки 1 и 2 из ядерного топлива находятся внутри оболочки. Каждая из них составляет одну из частей целого шара и весит немного меньше критической массы используемого в бомбе оружейного металла.
При подрыве тротилового детонирующего заряда урановые слитки 1 и 2 соединяются в одно целое, их общая масса уверенно превышает критическую массу для данного материала, что приводит к цепной ядерной реакции и, соответственно, к атомному взрыву.
Весь фокус в том, что обогащать уран, даже при нынешнем развитии техники, в состоянии только очень богатые державы, обладающие развитой научной инфраструктурой. Еще сложнее, без чего атомное устройство не будет работать, разделить 235 и 238 изотопы урана.
Урановые рудники: правда и вымысел
Добыча урана – высокотехнологичная отрасль горнодобывающей промышленности, и отпетых убийц с разбойниками вряд ли кто-то допустил бы к работе со сложным и очень дорогим оборудованием. Более того, слухи о том, что добывающие уран шахтеры в обязательном порядке носят противогаз и свинцовое нижнее белье, также не более чем миф.
Добывается уран в шахтах глубиной иногда до километра. Самые большие запасы этого элемента обнаружены в Канаде, России, Казахстане и Австралии. В России из одной тонны руды получается в среднем около полутора килограмм урана. Это отнюдь не самый большой показатель. В некоторых европейских рудниках эта цифра доходит до 22 кг из тонны.
Радиационный фон в шахте примерно такой же, как и на границе стратосферы, где латают гражданские пассажирские самолеты.
Урановая руда
Обогащать уран начинают сразу после добычи, непосредственно возле шахты. Кроме металла, как и любая другая руда, урановая содержит пустую породу. Первоначальный этап обогащения сводится к сортировке поднятых из шахты булыжников: на богатые ураном и бедные. Буквально каждый кусок взвешивается, измеряется автоматами и, в зависимости от свойств, направляется в тот или иной поток.
Затем в дело вступает мельница, измельчающая богатую ураном руду в мелкий порошок. Однако это пока не уран, а всего лишь его оксид. Получение же чистого металла – сложнейшая цепочка химических реакций и превращений.
Однако мало просто выделить чистый металл из исходных химических соединений. Из всего содержащегося в природе урана 99 % занимает изотоп 238, его 235-му собрату остается менее одного процента. Их разделение – сложнейшая задача, решать которую под силу далеко не любой стране.
Газодиффузионный способ обогащения
Это первый способ, с помощью которого стали обогащать уран. Применяется до сих пор в США и Франции. Основан на разнице плотности 235 и 238 изотопов. Урановый газ, выделенный из оксида, под большим давлением закачивается в камеру, разделенную мембраной. Атомы 235 изотопа более легкие, поэтому от полученной порции тепла движутся быстрее «медлительных» атомов 238 урана, соответственно, чаще и интенсивнее бьются о мембрану. По законам теории вероятности имеют больше шансов угодить в одну из микропор и оказаться на другой стороне этой самой мембраны.
Эффективность такого метода невелика, ведь разница между изотопами очень и очень незначительна. Но как сделать обогащенный уран, пригодный для использования? Ответ – применяя этот метод много и много раз. Для того чтобы получить пригодный для изготовления топлива реактора электростанции уран, система очистки газодиффузионным способом повторяется несколько сотен раз.
Отзывы экспертов об этом методе неоднозначны. С одной стороны, газодиффузионный способ сепарации – первый, обеспечивший Соединенные Штаты высококачественным ураном, сделавший их на время лидером в военной сфере. С другой, считается, что газовая диффузия дает меньше отходов. Единственное, что подводит в данном случае, – высокая цена конечного продукта.
Центрифужный метод
Это разработка советских инженеров. В настоящее же время кроме России имеется целый ряд стран, где обогащают уран методом, открытым в СССР. Это Бразилия, Великобритания, Германия, Япония и некоторые другие государства. Метод схож с газодиффузионной технологией тем, что использует разницу масс 235 и 238 изотопов.
Урановый газ закручивается в центрифуге до 1500 оборотов в секунду. Благодаря разной плотности на изотопы действуют центробежные силы разной величины. Уран 238, как более тяжелый, скапливается у стенок центрифуги, в то время как 235-й изотоп собирается ближе к центру. Смесь газов закачивается в верхнюю часть цилиндра. Пройдя путь до нижней части центрифуги, изотопы успевают частично разделиться и отбираются отдельно.
Несмотря на то что метод так же не дает 100%-ного разделения изотопов, и для достижения необходимой степени обогащения должен применяться многократно, экономически он гораздо эффективнее газодиффузионного. Так, обогащенный уран в России по технологии использования центрифуг примерно в 3 раза дешевле полученного на американских мембранах.
Применение обогащенного урана
Для чего же вся эта сложная и дорогая волокита с очисткой, выделением металла из окислов, разделением изотопов? Одна шайба обогащенного урана 235, из тех, что используются в атомной энергетике (из таких «таблеток» набирают стержни – ТВЭЛы), весом в 7 грамм заменяет примерно три 200-литровые бочки бензина или около тонны угля.
В зависимости от чистоты и соотношения содержания 235 и 238 изотопов обогащенный и обедненный уран применяется по-разному.
Также обогащенное энергонасыщенное сырье используется как топливо для ядерных реакторов в подводных лодках и на космических аппаратах из-за ограниченности массы и размеров.
Обедненный уран, содержащий в основном 238 изотоп, – топливо для стационарных атомных реакторов гражданского назначения. Реакторы на природном уране считаются менее взрывоопасными.
Кстати, по расчетам российских экономистов, при сохранении нынешних темпов добычи 92 элемента периодической таблицы, уже к 2030 году начнут истощаться его запасы в разведанных рудниках по всему миру. Вот почему ученые с надеждой смотрят на термоядерный синтез как на источник дешевой и доступной энергии в будущем.
Справка: обогащение урана
Что такое обогащенный и необогащенный уран и что можно сделать из того и другого? На эти и другие вопросы DW-WORLD ответил специалист в области ядерной физики профессор Петер Грабмайр.
Завод по конверсии урана в Исфахане. Здесь уран превращается в газ.
На что же годится уран, если он не обогащен?
Как стало ясно из ответов сотрудника кафедры ядерной физики в университете Тюбингена профессора Петера Грабмайра (Peter Grabmayr), в своем природном виде практически ни на что. Чтобы от урана был какой-то толк, его надо либо обогатить, либо обеднить. Обедненный уран используется в военной промышленности. Его используют при изготавлении, например, противотанковых гранат. Благодаря своей очень высокой плотности он имеет большую пробивную способность.
Почему в атомной промышленности в основном используется U 235, а не U 238?
Как проходит процедура обогащения урана?
Обычно для обогащения урана используются газовые центрифуги. Поэтому сначала природный уран конверсируют в газообразный гексафторид. Затем газ поступает в центрифуги, где за счет очень высоких скоростей происходит отделение более легкого изотопа U 235 от U 238.
Контекст
Будет ли Иран обогащать свой уран в России?
11.11.2005 Россия предложила Тегерану свой вариант решения международного кризиса вокруг атомной программы Ирана, которое, якобы, одобрили США и европейская тройка. Однако в США опровергли это сообщение.
Немецкие оборонные технологии поставлялись в Сирию и Иран через посредников в России
7.11.2005 Военные заводы в Сирии и Иране получали новейшие разработки Германии в области вооружений при помощи нелегальных посредников в Москве, Санкт-Петербурге и Самаре.
Также по теме
Переговоры главы МАГАТЭ с Ираном не принесли прорыва 25.11.2021
Иран почти вдвое увеличил запасы обогащенного урана 04.11.2021
Иран отвергает критику Запада по своей атомной программе 01.11.2021
Выпуск высокообогащенного урана служит мирным целям в медицине и науке, заявили в МИД Ирана. Лидеры Германии, США, Франции и Великобритании ранее обвинили Тегеран в провокациях.
Как обогащают уран: метод центрифужного разделения изотопов
Разделить изотопы совсем не просто. Их химические свойства идентичны (в конце концов, это один и тот же химический элемент), а разница в атомной массе составляет чуть более 1%, так что физические методы для разделения должны иметь очень высокую избирательность. Этот вопрос в 1950-х стал одним из решающих моментов, которые определили успех советской ядерной отрасли и заложили основу для современной конкурентоспособности российской ядерной промышленности на мировом рынке.
Сквозь сито
Самым простым методом разделения является газовая диффузия — «продавливание» газообразного сырья (гексафторид урана) сквозь мелкопористую мембрану, при этом различные изотопы диффундируют сквозь поры с различной скоростью. Именно газовая диффузия стала первым методом, который использовался для получения промышленных количеств урана-235 на первых обогатительных комбинатах. В США разработки в области газовой диффузии для Манхэттенского проекта велись под началом лауреата Нобелевской премии Гарольда Юри. В СССР до 1954 года этим направлением руководил академик Борис Константинов, потом его сменил Исаак Кикоин.
Поначалу, как это нередко бывает, метод газовой диффузии казался доступнее в реализации. Но он требовал огромных затрат электроэнергии — Саяно-Шушенская ГЭС и первая очередь Белоярской атомной, как теперь выясняется, строились прежде всего для этих целей. Кроме общей дороговизны и низкого КПД, метод газовой диффузии был небезопасен для работающих — главным образом из-за высоких температур и шума в цехах. Плюс большие объемы химически активных смесей под давлением, а это потенциальные выбросы и загрязнение окружающей среды. Между тем альтернатива газодиффузионному методу была известна с конца XIX века — это центрифужный метод, сулящий весьма значительную экономию: когда в 1958 году завод в Верх-Нейвинске вышел на расчетный режим, оказалось, что энергопотребление на единицу разделения в 20 (!) раз меньше диффузионного метода, а себестоимость — вдвое меньше. Правда, на пути создания центрифуг конструкторов поджидали многочисленные технологические сложности.
Немецкие корни
Истоки советской технологии центрифуг берут свое начало в нацистской Германии, где в рамках атомного проекта велись эксперименты по разделению урана. Один из участников этого проекта, инженер-физик Геронт Циппе, оказался среди других немецких военнопленных, отправленных в СССР. Под началом Макса Штеенбека, своего соотечественника и тестя, Циппе до 1954 года занимался экспериментальными исследованиями — сначала в Лаборатории «А» в Сухуми (будущий Сухумский физико-технический институт), а последние два года — в особом конструкторском бюро на Кировском заводе в Ленинграде.
Как свидетельствуют участники и очевидцы тех событий, немецкие ученые не знали отказа в материалах для исследований. И режим у них был почти такой же, как у наших секретных атомщиков, которых столь же плотно опекало ведомство Берии. В июле 1952 года специальным постановлением правительства Штеенбека и его помощников перевели из Сухумского института в Ленинград, в ОКБ Кировского завода. Да еще усилили группу выпускниками политехнического института с профильной кафедры ядерных исследований. Была поставлена задача изготовить и испытать два агрегата по схеме Циппе-Штеенбека. За дело взялись горячо, однако уже в первом квартале 1953-го работу прекратили, не доводя до испытаний: стало ясно, что предложенная конструкция не годится для серийного производства.
Центрифуга Циппе была не первой советской машиной подобного назначения. Еще во время войны в Уфе другой немец, Фриц Ланге, бежавший из Германии в 1936 году, изготовил громоздкий аппарат на подшипнике. Однако специалисты, знакомые с перипетиями атомного проекта в СССР и США, отмечают одно безусловное достижение группы Штеенбека — оригинальную конструкцию опорного узла: ротор опирался на стальную иглу, а эта игла — на подпятник из сверхтвердого сплава в масляной ванне. И вся эта хитроумная конструкция удерживалась специальной магнитной подвеской в верхней части ротора. Его раскрутка до рабочей скорости также производилась посредством магнитного поля.
Советский конкурент
В то время как проект группы Штеенбека потерпел фиаско, в феврале того же 1953 года была выведена на рабочие обороты газовая центрифуга с жестким ротором конструкции советского инженера Виктора Сергеева. За год до этого Сергеев с группой специалистов из особого КБ Кировского завода, где он тогда работал, был командирован в Сухуми для ознакомления с экспериментами Штеенбека и его команды. «Именно тогда он задал Штеенбеку технический вопрос о расположении отборников газа в виде трубок Пито, — приоткрыл важные подробности ветеран центрифужного производства ПО «Точмаш» Олег Чернов, хорошо знавший Сергеева и работавший вместе с ним. — Вопрос был сугубо техническим и содержал, по сути, подсказку, как сделать конструкцию центрифуги работоспособной». Но доктор Штеенбек проявил категоричность: «Они станут тормозить поток, вызывать турбулентность, и никакого разделения не будет!» Спустя годы, работая над мемуарами, он об этом пожалеет: «Идея, достойная того, чтобы исходить от нас! Но мне она в голову не приходила. »
По словам Олега Чернова, Циппе перед отъездом в Германию имел возможность ознакомиться с опытным образцом центрифуги Сергеева и гениально простым принципом ее работы. Оказавшись на Западе, «хитрый Циппе», как его нередко называли, запатентовал конструкцию центрифуги в 13 странах. Первые лица в советском атомном ведомстве, узнав о таком интеллектуальном коварстве, шум поднимать не стали — если следовать официальной версии, «чтобы не вызывать подозрений и повышенного интереса к этой теме у военно-технической разведки США». Пусть, мол, думают, что Советы довольствуются неэкономичным, как и у них, газодиффузионным методом. В 1957 году, переехав в США, Циппе построил там работающую установку, воспроизведя по памяти опытный образец Сергеева. И назвал ее, следует отдать должное, «Русской центрифугой». Однако увлечь американцев он не сумел. В отношении новой машины, как в свое время и по конструкции Штеенбека, был вынесен вердикт: для промышленного использования непригодна.
Правда, четверть века спустя в США все-таки решили перейти с газовой диффузии на центрифуги. Первая попытка не удалась — в 1985 году, когда были установлены первые 1300 машин, разработанные в Оук-Риджской национальной лаборатории, правительство США закрыло программу. В 1999 году на расконсервированной площадке в Пайктоне (штат Огайо) вновь начались работы по установке американских центрифуг нового поколения (в 10−15 раз больше российских по высоте и в два-три раза по диаметру) с ротором из углеродных волокон. По плану смонтировать 96 каскадов по 120 «волчков» предполагалось еще в 2005 году, но и к концу 2012 года проект все еще не запущен в коммерческую эксплуатацию.
Секретные иголки
А тем временем в СССР, в малоприметном местечке Верх-Нейвинск на Среднем Урале, в обстановке строжайшей секретности монтировалась первая опытная линия разделительных газовых центрифуг. Исаак Кикоин еще в 1942 году сталкивался с газовой центрифугой конструкции Ланге и даже испытывал ее в своей лаборатории в Свердловске. Тогда эксперименты желаемых результатов не дали, и академик скептически относился к самой возможности создания промышленных газовых центрифуг. Главной бедой самых первых установок была их недолговечность. И хотя вращались они поначалу со скоростью «всего» 10000 оборотов в минуту, совладать с огромной кинетической энергией ротора было далеко не просто.
— Машины-то ваши разрушаются! — язвительно упрекнул разработчиков на одном из совещаний в Минсредмаше начальник главка Александр Зверев, имевший звание генерала НКВД.
— А вы что хотели? Чтобы они еще и размножались?! — дерзко парировал руководивший в то время проектом заместитель главного конструктора Анатолий Сафронов.
По первоначальным расчетам, толщина наружных стенок корпуса центрифуги должна была быть 70 мм — как танковая броня. Попробуй такую махину раскрути. Но методом проб и ошибок нашли-таки компромиссное решение. Был создан специальный сплав — прочнее и легче стали. Корпуса современных центрифуг, которые одному из авторов довелось увидеть и подержать в руках на ПО «Точмаш» во Владимире, никаких ассоциаций с танковой броней не вызывают: обычные с виду пустотелые цилиндры с отшлифованной до блеска внутренней поверхностью. Издали их можно принять за обрезки труб с соединительными фланцами на концах. Длина — не больше метра, в диаметре — сантиметров двадцать. А на Уральском электрохимическом комбинате из них собраны гигантские каскады длиною в сотни метров. Знаки на стенах и специальная разметка на окрашенном бетонном полу в технологических проходах указывают, что здесь принято перемещаться на велосипеде. Правда, не быстрее 5−10 км/ч.
А внутри гудящих едва слышно центрифуг совсем другие скорости — ротор на игле с корундовым подпятником, «подвешенный» в магнитном поле, делает 1500 оборотов в секунду! В сравнении с первым изделием ВТ-3Ф 1960 года выпуска его разогнали почти в десять раз, а срок безостановочной работы увеличили с трех лет до 30. Наверное, трудно найти другой пример, когда бы техника демонстрировала такую надежность при столь экстремальных параметрах. Как рассказал заместитель начальника центрифужного производства Валерий Лемперт, на комбинате в Новоуральске еще работают машины, которые «Точмаш» поставил туда 30 лет назад: «Это было, наверное, третье поколение центрифуг, а сейчас серийно производится восьмое и запускается в опытное производство девятое».
«В конструкции нашей центрифуги ничего сверхсложного нет. Все дело в отработке технологии до мельчайших деталей и строгом контроле качества, — объясняет Татьяна Сорокина, которая десятки лет «вела» на заводе технологию изготовления опорной иглы для ротора. — Такие иглы делают из обычной рояльной проволоки, из которой тянут струны. А вот способ закалки наконечника — это наше ноу-хау».
Свое объяснение секретам российской центрифуги дал на склоне лет и один из главных ее создателей — Виктор Сергеев. По свидетельству инженера Олега Чернова, на вопрос спецслужб, а что же нужно охранять в этом изделии и в чем его главный секрет, конструктор ответил лаконично: «Люди».























