для чего нужны силовые диоды
Силовые диоды
В основе принципа действия большинства полупроводниковых приборов лежат явления и процессы, возникающие на границе между двумя областями полупроводника с различными типами электрической проводимости – электронной (n-типа) и дырочной (р-типа). В области n-типа преобладают электроны, которые являются основными носителями электрических зарядов, в р-области таковыми являются положительные заряды (дырки). Граница между двумя областями с различными типами проводимости называется р-п-переходом.
Функционально диод (рис. 1.) можно считать неуправляемым электронным ключом с односторонней проводимостью. Диод находится в проводящем состоянии (замкнутый ключ), если к нему приложено прямое напряжение.
Рис. 1. Условно-графическое обозначение диода
Ток через диод iF определяется параметрами внешней цепи, а падение напряжения на полупроводниковой структуре имеет небольшое значение. Если к диоду приложено обратное напряжение, то он находится в непроводящем состоянии (разомкнутый ключ) и через него протекает небольшой ток. Падение напряжения на диоде в этом случае определяется параметрами внешней цепи.
Защита силовых диодов
Наиболее характерными причинами электрического повреждения диода являются высокая скорость нарастания прямого тока diF/dt при его включении, перенапряжения при выключении, превышение максимального значения прямого тока и пробой структуры недопустимо большим обратным напряжением.
При высоких значениях diF/dt возникает неравномерная концентрация носителей заряда в структуре диода и, как следствие этого, локальные перегревы с последующим повреждением структуры. Основной причиной высоких значений diF/dt является малая индуктивность в контуре, содержащем источник прямого напряжения и включенный диод. Для снижения значений diF/dt последовательно с диодом включается индуктивность, которая ограничивает скорость нарастания тока.
Для уменьшения амплитудных значений напряжений, прилагаемых к диоду при отключении цепи, используется соединённые последовательно резистор R и конденсатор C – так называемая RC-цепь, подключаемая параллельно диоду.
Для защиты диодов от токовых перегрузок в аварийных режимах используются быстродействующие электрические предохранители.
Основные типы силовых диодов
По основным параметрам и назначению диоды принято разделять на три группы: общего назначения, быстровосстанавливающиеся диоды и диоды Шоттки.
Диоды общего назначения
Эта группа диодов отличается высокими значениями обратного напряжения (от 50 В до 5 кВ) и прямого тока (от 10 А до 5 кА). Массивная полупроводниковая структура диодов ухудшает их быстродействие. Поэтому время обратного восстановления диодов обычно находится в диапазоне 25-100 мкс, что ограничивает их использование в цепях с частотой выше 1 кГц. Как правило, они работают в промышленных сетях с частотой 50 (60) Гц. Прямое падение напряжения на диодах этой группы составляет 2,5-3 В.
Силовые диоды выпускаются в различных корпусах. Наибольшее распространение получили два вида исполнения: штыревой и таблеточный (рис. 2 а, б).
Рис. 2. Конструкция корпусов диодов: а – штыревая; б – таблеточная
Принцип действия диодов Шоттки основан на свойствах области перехода между металлом и полупроводниковым материалом. Для силовых диодов в качестве полупроводника используется обедненный слой кремния n-типа. При этом в области перехода со стороны металла имеет место отрицательный заряд, а со стороны полупроводника – положительный.
Особенностью диодов Шоттки является то, что прямой ток обусловлен движением только основных носителей – электронов. Отсутствие накопления неосновных носителей существенно уменьшает инерционность диодов Шоттки. Время восстановления составляет обычно не более 0,3 мкс, падение прямого напряжения примерно 0,3 В. Значения обратных токов в этих диодах на 2-3 порядка выше, чем в диодах с p-n-переходом. Предельное обратное напряжений обычно не более 100 В. Они используются в высокочастотных и импульсных цепях низкого напряжения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Силовые полупроводниковые приборы: диоды и тиристоры, их виды и применение
Силовые полупроводниковые приборы – элементы, которые применяются в преобразователях электрической энергии и в схемах силовых установок, являются неотъемлемой составляющей цепей как постоянного, так и переменного тока. Они играют роль выпрямителей или блокираторов, препятствующих коммутационным перенапряжениям. Чаще всего эти детали встречаются в конструкциях мощных турбинных генераторов, гальванических установок, низковольтных сварочных приборов, синхронных компенсаторов, электрогенераторов автомобилей и тракторов.
Разновидности популярных силовых диодов
Классифицируются силовые диоды на низкочастотные и частотные. Первые могут иметь штыревое, таблеточное и лавинное исполнение. Для производства таких элементов используется кремний. Модификации применяются в цепях с частотой до 500 Гц. Они могут выдерживать вибрации и многократные удары непродолжительное время.
Силовые диоды используются при частотах от 2000 Гц и больше. Они предназначены для схем установок, нуждающихся в быстром обратном восстановлении и небольших зарядах. Их особенностью является способность выдерживать высокие нагрузки. Их исполнение может быть штыревым и таблеточным.
Где используются силовые диоды
Различные промышленные установки не обходятся без использования обоих вариантов силовых диодов. Их области применения зависят от предназначения и особенностей техники. Элементы внедряются в схемы:
неуправляемых и полуавтоматических мостов выпрямления;
сварочных аппаратов и инверторов, отличающихся высокой и низкой мощностью;
мощных электроприводов промышленного оборудования и транспортных средств;
выпрямителей электролизных и гальванических приборов;
оборудования, используемого в металлургии;
источников бесперебойного питания.
Силовые диоды представляют собой неуправляемые электронные ключи. Они отличаются односторонней проводимостью. Проводящее состояние элементы приобретают при воздействии прямого напряжения. Полупроводники предназначены для токов свыше 10 ампер. При их выборе необходимо учитывать тип исполнения и технические характеристики.
Правильное решение поможет предупредить перенапряжение в процессе коммутации, повышение токов, вызывающих внешние или внутренние короткие замыкания, перегревание приборов, негативное воздействие помех. На сайте https://www.radioelementy.ru силовые диоды и другие радиодетали можно подобрать для любых цепей в ассортименте отечественных и зарубежных производителей.
Тиристоры: эксплуатация и разновидности
Это полупроводниковые приборы, предназначенные для комплектации выпрямителей, инверторных устройств, импульсных регуляторов, линий возбуждения генераторов. Исходя из вида тиристоры применяются в схемах широтноимпульсного пуска или в бесконтактных аппаратах. Они эффективно справляются с задачами по управлению скоростью электроподвижных составов, защитой сварочного оборудования.
Низкочастотные приборы способы выдерживать влияние синусоидальных вибраций в пределах до 100 Гц. Им не страшны многократные нагрузки продолжительностью в 2-15 мс. Увеличенную нагрузочную стойкость имеют быстродействующие тиристоры.
Они незаменимы в установках, нуждающихся в краткосрочном включении и отключении. Такие элементы отличаются способностью выдерживать критические скорости увеличения напряжения при закрытом состоянии и токовых импульсов – при открытом.
Распространенные модели тиристоров используются:
при образовании цепей постоянного либо переменного тока в разнообразных электротехнических установках и радиоэлектронных приборах;
оснащении высокомощных компенсаторов, регуляторов и преобразовательных механизмов тяговых подстанций, синхронных электрических двигателей, электродуговых печей;
комплектации электросварочного и плавильного оборудования, электротранспортных средств, ИБП, силовых установок;
проектировании других преобразователей.
При выборе полупроводниковых приборов, созданных на базе монокристалла, имеющего от трех p-n-переходов, необходимо обращать внимание на количество выводов. По этому значению они классифицируются на диодные, триодные и тетродные.
Вторым важным моментом является принцип действия силовых приборов. Он может быть симметричным (ток проводится в оба направления) и ассиметричным (движение импульсов осуществляется в одну сторону).
Устройства первого типа способны функционировать при положительных и отрицательных показателях. Индивидуальными параметрами выбора являются максимально допустимые прямые и обратные токи, уровень падения напряжения, степень управляющего сигнала, рассеиваемая мощность, определяющая силу подключаемых нагрузок.
«PRO» генератор. Часть 2. Анатомия диодного моста.
И снова здравствуйте! Продолжим «мурыжить» нашу тему про автомобильный генератор, кому интересно
Начало можно прочитать тут, а сегодня будем рассматривать выпрямитель напряжения (диодный мост или подкова). Ну и как оно работает и для чего вообще нужно?
Принцип действия диодного моста генератора
Для питания потребителей в бортовой сети автомобиля и обмотки возбуждения самого генератора во время работы самого двигателя, необходим электрический ток именно постоянного напряжения.
Функцию преобразования переменного тока, индуктируемого в обмотке статора генератора, в электрический ток постоянного напряжения выполняет как раз выпрямительный блок (диодный мост).
Принцип его действия основан на свойстве диодов пропускать электрический ток только в одном направлении. Электрический ток попадает в диодный мост через крепящиеся к нему выводы обмоток статора. Он протекает через диоды в одном направлении. Но никак обратно. Поэтому ток получается постоянный (выпрямленный).
На рисунке видно, что диоды бывают как «плюсовые» так и «минусовые». А называются они так, потому что вроде бы во внешне одинаковых диодах электрический ток течет в разные стороны, но всегда от «от плюса к минусу», и никак обратно.
Выпрямительный блок (диодный мост) состоит из двух алюминиевых теплоотводящих пластин, так называемых «плюсовой» и «минусовой» которые объединены в целую конструкцию через изоляционные втулки при помощи заклепок. Одна пластина (нижняя) соединена с «массой», через корпус генератора, другая (верхняя) с «плюсом», через выводы обмоток статора. Плюсовая пластина имеет три контакта для присоединения выводов обмоток статора и вывод через который подается напряжение к потребителям (вывод «30»).
В каждую из пластин впаяно по четыре диода, т.е. четыре положительных диода (Д104-20) и три отрицательных (Д104-20Х), рассчитанных на ток не более 20А. Положительные и отрицательные диоды объединены попарно. Помимо этого имеются три дополнительных диода (КД223А), рассчитанных на 2А. Они установлены на пластмассовом держателе, и питают обмотку возбуждения генератора через регулятор напряжения и щетки.
Эти три дополнительных диода отсекают ток АКБ в момент, когда двигатель не работает; отрицательные диоды взяты из основного (силового) мостика генератора.
Основные и дополнительные диоды объединены в общую шину, имеющую с одной стороны штекерный вывод (вывод 61 генератора) и вывод на регулятор напряжения с другой стороны.
Вот мы и подошли в плотную к самой диагностике диодного моста. При «прозвонке» диодов различают два типа повреждения диодов:
— Мы знаем, что электрический ток проходит через исправный диод только в одну сторону, а именно от «плюса к минусу», но если вдруг при проверке диода электрический ток проходит через диод в обоих направлениях, то такой тип повреждения диода называют «пробой диода».
— Если же электрический ток не проходит через диод в никаких направлениях вообще, то такой тип повреждения диода называют «обрыв диода».
Начнем с проверки проводимости силовых диодов диодного моста:
Всегда помним и не забываем, электрический ток движется «плюса к минусу», поэтому для проверки «отрицательных диодов» впресованных в нижнюю пластину диодного моста, мы «плюсовой» щуп мультиметра прикладываем к нижней пластине, а «минусовым» щупом проверяем показания на каждой из 4х соединительных пластин диодов (три из которых являются также местом крепления выводных клемм статора генератора). Показания должны укладываться в диапазон 400 — 700 Ом, и если щупы поменять местами, то мультиметр вообще ничего не должен показывать, на табло будет просто 1, т.е бесконечность. Из этого мы заключаем, что диоды исправны, показания находятся в диапазоне и электрический ток движется только в одну сторону, т.е «пробой диода» отсутствует.
Ну а для проверки проводимости «положительных» силовых диодов впресованных в верхнюю пластину диодного моста, мы «минусовой» щуп мультиметра прикладываем к верхней пластине, а «положительным» щупом проверяем показания на каждой из 4х соединительных пластин диодов. Далее также показания должны укладываться в диапазон 400 — 700 Ом, и если щупы поменять местами, то мультиметр вообще ничего не должен показывать, на табло будет просто 1, т.е бесконечность. Из этого мы заключаем, что и «положительные» диоды исправны, показания находятся в диапазоне и электрический ток движется только в одну сторону, т.е «пробой диода» отсутствует.
Ну и осталось проверить дополнительные диоды на проводимость и на «пробой».
Для проверки дополнительных диодов мы также мультиметр оставляем в режиме проверки диодов и «минусовой» щуп прислоняем к общей шине дополнительных диодов, а «плюсовой» щуп поочередно прислоняем к трем соединительным пластинам диодов, так как дополнительных диодов только три, и одна из этих пластин такого диода не имеет. Показания должны укладываться в диапазон 400 — 700 Ом. Ну а для проверки диодов на пробой, достаточно поменять щупы мультиметра местами и мультиметр вообще ничего не должен показывать, на табло будет просто 1, т.е бесконечность. Из этого мы заключаем, что и «дополнительные» диоды исправны, показания находятся в диапазоне и электрический ток движется только в одну сторону, т.е «пробой диода» отсутствует.
Ну вот мы полностью проверили силовые и дополнительные диоды диодного моста. На «обрыв» диоды в данном случае проверять не нужно, так как присутствуют показания измерений проводимости диодов. На этом все. Продолжение следует. Всем пока.
Особенности применения основных видов силовых диодов
Большое значение при проектировании преобразовательных устройств имеет правильный выбор типа силовых полупроводниковых приборов. В процессе расчетов проектировщик должен учитывать множество различных причин, влияющих на нормальную работу преобразователя:
Игнорирование хотя бы одной из этих причин исключает нормальную работу преобразователя.
Силовые полупроводниковые диоды предназначены для применения в преобразователях электроэнергии, а также в цепях постоянного и переменного тока различных силовых установок. Исходя из типа приборов, диоды могут применяться в качестве выпрямительных и для защиты от коммутационных перенапряжений, в системах возбуждения мощных турбогенераторов и синхронных компенсаторов, в низковольтных выпрямителях сварки и гальванического оборудования, в автомобильных и тракторных электрогенераторах.
Диоды низкочастотные (штыревое исполнение)
Диоды Д161-200, Д161-250, Д161-320, Д171-400 предназначены для применения в электротехнических и радиоэлектронных устройствах в цепях постоянного и переменного тока частотой до 500 Гц. Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц и многократные удары длительностью 2-15 мс с ускорением 147 м/с2. Это диоды прямой полярности, при этом анодом диодов является медное основание, катодом — гибкий вывод.
Диоды низкочастотные (таблеточное исполнение)
Диоды Д133-400, Д133-500, Д133-800, Д143-630, Д143-800, Д143-1000, Д253-1600 предназначены для применения в цепях постоянного и переменного тока частотой до 500 Гц в электротехнических устройствах общего назначения. Диоды устойчивы к воздействию синусоидальной вибрации в диапазоне частот 1-100 Гц с ускорением 49м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2. Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.
Диоды низкочастотные лавинные предназначены для применения в устройствах общего назначения частотой до 500 Гц. Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц с ускорением 49м/с2, многократных ударов длительностью 2-15 мс с ускорением 147 м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2. Диоды ДЛ 161-200, ДЛ 171-320 имеют штыревое исполнение. Анодом диодов является медное основание, катодом — гибкий вывод. Диоды ДЛ 123-320, ДЛ133-500 имеют таблеточное исполнение. Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.
Диоды быстровосстанавливающиеся (частотные)
Диоды ДЧ 261-250 и ДЧ 261-320 (штыревое исполнение), диоды ДЧ 243-500, 253-1000 и др. (таблеточное исполнение) применяются в статических преобразователях электроэнергии, а также в других цепях постоянного и переменного тока частоты 2000 Гц и выше, в различных силовых установках, в которых требуются малые времена обратного восстановления и малые заряды восстановления. Эти диоды отличаются высокой нагрузочной способностью по току при высоких частотах.
Промышленные области применения основных типов силовых диодов:
Источник: АО «Протон-Электротекс»
Для чего нужны силовые диоды
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
Диод — это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход

Как определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
.jpg)
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
генератор частот
Осциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.


Ничего себе! Диод срезал только положительную часть синусоиды!
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр — это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр — это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:
Светодиоды
Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор — (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Диодный мост и диодные сборки
Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты — одна из разновидностей диодных сборок.

На схемах диодный мост обозначается вот так:
Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.
Очень интересное видео про диод
Похожие статьи по теме «диод»















.jpg)















