для чего предназначен процессор эвм
Что такое центральный процессор?
Персональный компьютер состоит из множества компонентов, соединенных в единую систему. Взаимодействие и контроль между ними осуществляется благодаря центральному процессору, выполняет роль электронного мозга ПК. Без него любая техника, будь то ноутбук, планшет или системный блок – груда железок. Давайте подробнее разберемся, как работает центральный процессор компьютера и какова его структура.
Виды процессоров
Прежде чем переходить к рассмотрению ключевых характеристик ЦП, необходимо разобраться каких видов он бывает. Центральных процессоров или CPU, как их называют заграницей много, и они разделяются по следующим критериям.
По способу применения:
По фирме производителю:
Обратите внимание! Помимо Интеловских и Амдэшных ЦП существуют продукты, выпускаемые под брендами других компаний, но они мало востребованы, составляя малую часть об общего объема товаров на рынке компьютерного железа.
Многие пользователи ошибочно полагают, что продукция компании Intel отличается от AMD только названием, но это далеко не так. Структура каждого центрального процессора, произведенного под торговой маркой данных компаний, существенно отличается от конкурентов. Благодаря этому, они обладают своими достоинствами и недостатками. Например, продукция компании Intel наделена следующими положительными характеристиками, выгодно отличающими их центральные процессоры от AMD:
Товары от AMD также имеют ряд характеристик, позволяющих им активно конкурировать на рынке компьютерного железа:
Описание центрального процессора
Итак, с видами ЦП и их отличительными особенностями мы разобрались, пора переходить к описанию самого изделия и разобраться в том, что это такое. Для простоты понимания разобьём его на несколько пунктов, выделяя в них ключевые особенности изделия:
С их помощью мы разберемся как работает процессор и как он устроен.
Назначение
Главная задача любого центрального процессора – выполнение вычислительных процессов, с помощью которых устройствам передается набор команд, необходимых для выполнения. Команды находятся в ОЗУ ПК и считываются CPU оттуда напрямую. Соответственно, чем выше вычислительные мощности процессора, тем большим быстродействием обладает вся система.
Структура
Общая структура любого центрального процессора состоит из следующих блоков:
Блок интерфейса содержит следующие компоненты:
В операционный блок входят:
Обратите внимание! Операционный блок и блок интерфейса работают в параллельном режиме, но интерфейсная часть находится на шаг впереди, записывая в блок регистров команды, которые в дальнейшем выполняются операционной частью.
Системная шина служит для передачи сигналов от центрального процессора к другим компонентам устройства. С каждым новым поколением структура процессора немного меняется и последние разработки сильно отличаются от первых процессоров, используемых на заре становления компьютерных технологий.
Характеристики
Характеристики любого центрального процессора оказывают большое влияние на быстродействие как отдельных элементов системы, так и всего комплекса устройств в целом. Среди основных характеристик, влияющих на параметры производительности, выделяют:
Из побочных характеристик, напрямую не относящихся от технологии производства, выделяют тепловыделение и количество потребляемой во время работы энергии. Мощные устройства выделяют много тепла и требуют большую энергетическую подпитку во время работы. Для их полноценной работы применяются вспомогательные системы охлаждения.
Процессор ЭВМ
Процессор – это блок ЭВМ, предназначенный для автоматического считывания команд программы, их расшифровки и выполнения. Будучи центральным устройством ЭВМ, процессор во многом определяет её возможности и производительность.
Размещение процессора в одной микросхеме создало предпосылки для существенного увеличения скорости работы процессора и повышения его надежности. Уменьшение размеров привело к ухудшению условий теплоотдачи, что потребовало для охлаждения современных процессоров использования металлических радиаторов с большой площадью поверхности и вентиляторов («кулеров»).
АЛУ – компонента процессора, выполняющая арифметические и логические операции над данными.
Арифметической операцией называют процедуру обработки данных, аргументы и результат которой являются числами (сложение, вычитание, умножение, деление). Логической операцией называют процедуру, осуществляющую построение сложного высказывания (операции И, ИЛИ, НЕ, …).
АЛУ состоит из регистров, сумматора с соответствующими логическими схемами и блока управления выполняемым процессом. Устройство работает в соответствии с сообщаемыми ему кодами операций, которые при пересылке данных нужно выполнить над переменными, помещаемыми в регистры.
Регистр – это типовой узел ЭВМ, предназначенный для временного хранения данных или выполнения над ними некоторых действий. Регистр состоит из разрядов, в которые можно быстро записывать, запоминать и считывать слово, команду, двоичное число. Обычно регистр имеет ту же разрядность, что и машинное слово.
Регистры общего назначения (РОН) – общее название для регистров, которые временно содержат данные, передаваемые или принимаемые из памяти. РОН являются программно-доступными регистрами.
Сумматор – это устройство, осуществляющее операции сложения (логического и арифметического) чисел или битовых строк, представленных в прямом или обратном коде.
Чтобы обеспечить автоматические вычисления по программе, процессор должен уметь выполнять еще ряд дополнительных действий:
u извлекать из памяти очередную команду;
u расшифровывать ее и преобразовывать в последовательность стандартных элементарных действий;
u заносить в АЛУ исходные данные;
u сохранять полученный в АЛУ результат;
u обеспечивать синхронную работу всех узлов машины.
Для выполнения этих функций служит устройство управления (УУ).
УУ содержит несколько важных регистров для хранения информации, необходимой в ходе выполнения текущей команды.
Регистр команды – служит для размещения текущей команды, которая находится в нем в течение текущего цикла процессора.
Кроме этого, имеются регистры, содержащие адрес команды, счетчик адреса команды, адреса операндов, операнды и результаты выполнения команды.
Под разрядностью процессора понимают число одновременно обрабатываемых им битов. Формально эта величина есть количество двоичных разрядов в регистрах процессора.
Как правило, в современных процессорах разрядности регистров, шины данных и шины адреса различны. Например,
Основной алгоритм работы процессора
Важной составной частью фон-неймановской архитектуры является счетчик адреса команд. Он постоянно указывает на ячейку памяти, в которой хранится следующая команда программы. Считав очередную команду из памяти, процессор сразу же увеличивает значение счетчика так, чтобы он показывал на следующую команду. Затем считанная команда расшифровывается и выполняется.
При выполнении каждой команды вычислительная машина проделывает определенные стандартные действия:
1. Согласно содержимому счетчика адреса команды считывается очередная команда программы. Её код заносится на хранение в регистр команд. Счетчик команд автоматически изменяется так, чтобы в нем содержался адрес следующей команды. В простейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, определяющуюся длиной команды.
2. Считанная в регистр команд операция расшифровывается.
3. Извлекаются необходимые данные.
4. Над ними в АЛУ выполняются требуемые действия.
5. Результат записывается в ОЗУ.
Затем во всех случаях, за исключением останова, описанные действия циклически повторяются.
В приведенном алгоритме ничего не говорится о первоначальном значении счетчика адреса команд. Эта неопределенность решается следующим образом. При включении питания компьютера или при нажатии на кнопку сброса в счетчик аппаратно заносится стартовый адрес находящейся в ПЗУ программы инициализации всех устройств и начальной загрузки ЭВМ.
считывание очередной команды в регистр команд
формирование адреса
следующей команды
Рис 3.1 Основной алгоритм работы процессора.
Оптимизация выполнения команд
При использовании конвейеризации осуществляется параллельная обработка команд, в каждый момент одна команда считывается, другая декодируется и т.д. Всего в обработке одновременно находится пять команд. Таким образом, на выходе конвейера на каждом такте процессора появляется результат обработки одной команды. Первая инструкция может считаться выполненной, когда завершат работу все пять микрокоманд.
Во многих вычислительных системах наряду с конвейером команд используются конвейеры данных. Это позволяет достичь очень высокой производительности работы процессора.
Предельная тактовая частота во многом определяется технологией производства микросхем, в частности наименьшими достижимыми размерами элементов, которые определяют минимальное время передачи сигналов.
Система команд процессора.
Основные группы команд. Не смотря на большое число разновидностей ЭВМ, на самом низком уровне системы их команд имеют много общего. Любая ЭВМ содержит следующие группы команд :
1. Команды передачи данных (перепись), копирующие информацию из одного места в другое.
2. Арифметические операции, которым обязана своим рождением вычислительная техника.
3. Логические операции, позволяющие компьютеру производить анализ получаемой информации. Примерами могут служить сравнение, логические операции И, ИЛИ, НЕ, а так же анализ отдельных битов кода, их сброс и установка.
4. Сдвиги двоичного кода влево и вправо. Операции сдвига используются, например, при выполнении умножения и деления чисел.
5. Команды ввода и вывода информации для обмена с внешними устройствами.
6. Команды управления, к которым следует отнести все виды переходов. Сюда же включают операции по управлению процессором.
Процессоры RISC- и CISC- архитектуры
По способу представления команд все микропроцессоры можно разделить на две группы:
u процессоры типа CISC ( Complex Instruction Set Computing ) с полным набором команд;
u процессоры типа RISC ( Reduced ) с сокращенным набором команд. Эти процессоры нацелены на быстрое выполнение небольшого набора простых команд. При выполнении сложных команд RISC – процессоры работают медленнее, чем CISC – процессоры.
Первоначально микропроцессоры имели CISC- архитектуру, для которой характерен набор сложных команд неодинаковой длины с большим количеством методов адресации к памяти.
Появившийся позднее RISC – подход предлагал менее сложные команды одинаковой длины с отказом от некоторых сложных методов адресации. В процессорах с такой организацией обращение к ячейкам памяти производится только двумя специальными командами чтения и записи, а все остальные операции работают с регистрами. Такого рода упрощения позволяют оптимизировать выполнение команд и существенно ускорить работу процессора.
Сформулированы четыре основных принципа RISC – архитектуры:
u каждая команда независимо от её типа выполняется за один машинный цикл, длительность которого должна быть максимально короткой;
u все команды должны иметь одинаковую длину и использовать минимум адресных форматов, что резко упрощает логику управления процессором;
u обращение к памяти происходит только при выполнении операций записи и чтения, вся обработка данных осуществляется исключительно в регистровой структуре процессора;
u система команд должна обеспечивать поддержку языков высокого уровня (имеется виду подбор системы команд, наиболее эффективной для различных языков программирования).
Процессоры фирмы Intel относятся к CISC- группе, однако для увеличения быстродействия фирма использует достижения RISC – архитектуры, так модели 486 и выше имеют внутреннее RISC – ядро, способное эмулировать сложную CISC- систему команд.
Что такое процессор (CPU)
В этой статье мы рассмотрим, что такое процессор CPU, какие у него функции и из чего он состоит.
В каждом вычислительном устройстве (ПК, смартфон, фотоаппарат) есть центр, который отвечает за правильную работу машины ― процессор.
В широком смысле процессор ― это устройство, которое выполняет вычислительные и логические операции с данными. Чаще всего этот термин используется для обозначения центрального процессора устройства. Расшифровка CPU ― Central Processing Unit (центральное обрабатывающее устройство). Это самая важная часть компьютера. Его мозг. Он выглядит как квадрат размером приблизительно 5×5 см:
С обратной стороны CPU находятся ножки, с помощью которых он крепится к материнской плате:
От мощности центрального процессора зависит скорость обработки команд и продуктивность работы других составляющих компьютера. Например, можно купить современную видеокарту, но она не сможет показать свои возможности, если управляется слабым CPU.
Функции CPU
Какие функции выполняет центральный процессор CPU? Главная функция ― управление всеми операциями компьютера: от простейших сложений чисел на калькуляторе до запуска компьютерных игр. Если рассматривать основные функции центрального процессора подробнее, CPU:
Из чего состоит CPU
Центральный процессор состоит из 3-х частей:
Каждое ядро может выполнять только одну задачу, хоть и за долю секунды. Одноядерный процессор выполняет каждую задачу последовательно. Для современного объёма операций этого мало, поэтому ценятся CPU с более чем одним ядром, чтобы выполнять несколько задач одновременно. Например, двухъядерный выполняет две задачи одновременно, трехъядерный ― три и т. д.
Главной характеристикой процессора является производительность. Она зависит от двух параметров: тактовая частота и разрядность.
Тактовая частота ― число выполненных операций в секунду. Измеряется в мегагерцах (МГц — миллион тактов в секунду ) и гигагерцах (ГГц — миллиард тактов в секунду). Чем больше тактовая частота, тем быстрее работает машина.
Разрядность ― количество информации (байт), которое можно передать за такт. Разрядность процессора бывает 8, 16, 32, 64 бита. Современные процессоры 32-х и 64-битные.
Производители CPU
На рынке есть два основных производителя центральных процессоров ― Intel и AMD.
Продукты Intel — дорогие, но имеют высокую производительность. Потребляют меньше энергии, следовательно меньше перегреваются. Имеют хорошую связь с оперативной памятью.
Продукты AMD значительно отстают от Intel, однако стоят дешевле. Они требуют много энергии и хуже взаимодействуют с оперативной памятью по сравнению с процессорами от Intel.
Подписывайтесь на рассылку нашего блога — впереди много полезных статей!
23. Центральный процессор ЭВМ. Основные параметры и классификация. Микропроцессоры типа CISC, RISC, VLIW.
назначение (микропроцессоры для серверов и мощных приложений; МП для персональных компьютеров и т.д.);
количество разрядов в обрабатываемой информационной единице (8-битные, 16-битные, 32-битные, 64-битные и др.);
технология изготовления (0.5мкм-технология; 0.35мкм; 0.25мкм; 0.18мкм; 0.13мкм; 0.07мкм, и т.п.).
Обобщенная структурная схема 32-разрядного микропроцессора x86 (серии Pentium) приведена на рис.15.3.
В регистре флагов каждый разряд имеет строго определенное назначение. Обычно разряды регистра флагов устанавливаются аппаратно при выполнении очередной операции в зависимости от получаемого в АЛУ результата. При этом фиксируются такие свойства получаемого результата, как нулевой результат, отрицательное число, переполнение разрядной сетки АЛУ и т.д.
Рис. 15.3. Обобщенная структурная схема 32-разрядного микропроцессора
Эти регистры используются для операций с данными, такими как сравнение, математические операции или запись данных в память. Регистр СХ чаще всего применяется как счетчик циклов.
Регистр ESP указывает на адрес вершины стека (адрес, куда будет заноситься следующая переменная командой PUSH).
Регистр ЕВР содержит адрес базы, который может использоваться при работе со стеком.
Блок управления микропроцессором содержит сегментные регистры, системные регистры и блок выработки управляющих сигналов микропроцессора.
Сегментные регистры CS, DS, ES, FS, GS, SS имеют длину по 16 бит и используются для формирования физических адресов команд и данных в основной памяти.
Регистр TR является регистром состояния задачи. «Видимая» его часть имеет длину 16 бит и содержит селектор дескриптора. «Скрытая» часть регистра содержит загружаемые автоматически базовый адрес точки входа, предел и атрибуты задачи.
Структурная схема блока выработки управляющих сигналов микропроцессора приведена на рис.15.4.
Основу его составляют счетчик команд, АЛУ, конвейер команд и группа управляющих, отладочных и тестовых регистров.
Регистр EIP является указателем адреса команды (Instruction Pointer), которая будет выбираться в конвейер команд в качестве очередной команды (в отечественной литературе такое устройство называется счетчик команд).
Рис. 15.4. Структурная схема блока выработки управляющих сигналов
Конвейер команд МП хранит несколько команд, что позволяет при выполнении линейных программ совместить подготовку очередной команды с выполнением текущей. Команды в конвейер команд поступают с внутренней магистрали микропроцессора и накапливаются в кэше команд. Блок предвыборки и прогнозирования переходов осуществляет трансляцию команд x86 в RISС-команды, прогнозирует последовательность исполнения команд и направляет полученные последовательности команд в соответствующие ветви конвейера команд (U,V,…). Каждый конвейер команд имеет свой буфер (память магазинного типа FIFO), из которого команды поступают в соответствующий регистр команд для исполнения.
АЛУ команд используется для вычисления физических адресов необходимых для работы микропроцессора команд и данных.
Микропроцессоры типа CISC
Микропроцессор CISC использует набор машинных инструкций, полностью соответствующий набору команд языка ассемблера. Вычисления разного типа в нем могут выполняться различными командами, даже если они приводят к одному результату (например, умножение на два и сдвиг на один разряд влево). Такая архитектура обеспечивает разнообразные и мощные способы выполнения вычислительных операций на уровне машинных команд, но для выполнения каждой команды обычно требуется большое число тактов процессора.
Для CISC-процессоров характерно:
• сравнительно небольшое число регистров общего назначения;
• большое количество машинных команд, некоторые из которых нагружены семантически аналогично операторам высокоуровневых языков программирования и выполняются за много тактов;
• большое количество методов адресации;
• большое количество форматов команд различной разрядности;
• преобладание двухадресного формата команд;
· наличие команд обработки типа регистр-память.
Эти недостатки обусловили необходимость разработки альтернативной архитектуры, нацеленной, прежде всего, на снижение нерегулярности потока команд уменьшением их общего количества. Это было реализовано в RISC-процессорах, название которых означает “чипы с сокращённой системой команд” (Reduced Instruction Set Computer).
Современные процессоры типа RISC характеризуются следующими особенностями:
упрощенный набор команд, имеющих одинаковую длину.
Отсутствуют макрокоманды, усложняющие структуру процессора и уменьшающую скорость его работы.
Взаимодействие с оперативной памятью ограничивается операциями пересылки данных.
Уменьшено число способов адресации
Используется конвейер команд.
Применяется высокоскоростная память.
Особенностью RISC архитектуры является механизм перекрывающихся окон, предназначенный для уменьшения числа обращений к оперативной памяти и межрегистровых передач, что способствует увеличению производительности ЭВМ.
Наиболее широко используемые в настольных компьютерах процессоры архитектуры x86 ранее являлись CISC-процессорами, однако новые процессоры, начиная с Intel 486DX, являются CISC-процессорами с RISC-ядром. Они непосредственно перед исполнением преобразуют CISC-инструкции x86-процессоров в более простой набор внутренних инструкций RISC.
Суперскалярные процессоры – дальнейшее развитие конвейеризации. Их отличительной особенностью является возможность выполнения нескольких команд за один процессорный цикл.
Архитектура их вычислительного ядра используюет несколько декодеров команд, которые могут нагружать работой множество исполнительных блоков. Если в процессе работы команды, обрабатываемые конвейером, не противоречат друг другу, и одна не зависит от результата другой, то такое устройство может осуществить параллельное выполнение команд. В суперскалярных системах формирование расписания управления команд возлагается на микропроцессор, что требует много ресурсов.
При описании архитектуры суперскалярного процессора часто используется модель окна исполнения. При исполнении программы микропроцессор как бы продвигает по статической структуре программы окно исполнения. Команды в окне исполнения могут исполняться параллельно, если между ними нет зависимости. Для устранения зависимостей, вызванных командами перехода, используется метод предсказания.
VLIW – появилась в России. Она не попадает под принципы фон Неймана (нарушает принцип программного управления, т.е. последовательного выполнения команд).
Архитектура ЭВМ с длинным командным словом (VLIW – Very Long Instruction Word) позволяет сократить объем оборудования, требуемого для реализации параллельной выдачи несколько команд, базируется на множестве независимых командных устройств. Вместо того чтобы выдавать на эти устройства последовательные команды, операции упаковываются в одну очень длинную команду. Ответственность за вывод параллельно выдаваемых для выполнения команд полностью ложится на компилятор.
В процессорах VLIW задача решается распределения работы между вычислительными модулями во время компиляции. Аппаратные средства, необходимые для реализации параллельной обработки, отсутствуют.
Для машин с VLIW-архитектурой был разработан новый метод планирования выдачи команд – трассировочное планирование. Во время планирования генерируется длинное командное слово. Процесс упаковки команд последовательной программы в длинные командные слова продолжается до тех пор, пока не будет оптимизирована вся программа.
Примеры процессоров на этой архитектуре – Intel Itanium (архитектура IA-64, Merced), микропроцессоры серии «Эльбрус» («Эльбрус 2000», «Эльбрус S»).
Для чего предназначен процессор эвм
Персональный компьютер (ПК) — это компьютер, предназначенный для обслуживания одного рабочего места. По своим характеристикам он может отличаться от больших ЭВМ, но функционально способен выполнять аналогичные операции. По способу эксплуатации различают настольные (desktop), портативные (laptop и notebook) и карманные (palmtop) модели ПК.
Совокупность аппаратных средств компьютера называют его аппаратной конфигурацией.
Видео YouTube
Когда программа находится в активном состоянии, содержательная часть ее данных рассматривается как команды, согласно которым работают аппаратные средства компьютера. Чтобы изменить порядок их работы, достаточно прервать исполнение одной программы и начать исполнение другой, содержащей иной набор команд.
Совокупность программ, хранящихся на компьютере, образует его программное обеспечение. Совокупность программ, подготовленных к работе, называют установленным программным обеспечением. Совокупность программ, работающих в тот или иной момент времени, называют программной конфигурацией.
Устройство компьютера. Любой компьютер (даже самый большой)состоит из четырех частей:
устройства ввода информации
устройства обработки информации
устройства вывода информации.
Конструктивно эти части могут быть объединены в одном корпусе размером с книгу или же каждая часть может состоять из нескольких достаточно громоздких устройств
Базовая аппаратная конфигурация ПК. Базовой аппаратной конфигурацией персонального компьютера называют минимальный комплект аппаратных средств, достаточный для начала работы с компьютером. С течением времени понятие базовой конфигурации постепенно меняется.
Чаще всего персональный компьютер состоит из следующих устройств:
Дополнительно могут подключатся другие устройства ввода и вывода информации, например звуковые колонки, принтер, сканер.
Системный блок — основной блок компьютерной системы. В нем располагаются устройства, считающиеся внутренними. Устройства, подключаемые к системному блоку снаружи, считаются внешними. Для внешних устройств используют также термин периферийное оборудование.
Монитор — устройство для визуального воспроизведения символьной и графической информации. Служит в качестве устройства вывода. Для настольных ПК в настоящее время наиболее распространены мониторы, основанные на электронно-лучевых трубках. Они отдаленно напоминают бытовые телевизоры.
Клавиатура — клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации. Информация вводится в виде алфавитно-цифровых символьных данных.
Мышь — устройство «графического» управления.
Внутренние устройства персонального компьютера.
Внутренними считаются устройства, располагающиеся в системном блоке. Доступ к некоторым из них имеется на лицевой панели, что удобно для быстрой смены информационных носителей, например гибких магнитных дисков. Разъемы некоторых устройств выведены на заднюю стенку — они служат для подключения периферийного оборудования. К некоторым устройствам системного блока доступ не предусмотрен — для обычной работы он не требуется.
Процессор. Микропроцессор — основная микросхема персонального компьютера. Все вычисления выполняются в ней. Основная характеристика процессора — тактовая частота (измеряется в мегагерцах, МГц). Чем выше тактовая частота, тем выше производительность процессора. Так, например, при тактовой частоте 500 МГц процессор может за одну секунду изменить свое
состояние 500 миллионов раз. Для большинства операций одного такта недостаточно, поэтому количество операций, которые процессор может выполнить в секунду, зависит не только от тактовой частоты, но и от сложности операций.
Единственное устройство, о существовании которого процессор «знает от рождения», — оперативная память — с нею он работает совместно. Оттуда поступают данные и команды. Данные копируются в ячейки процессора (они называются регистрами), а потом преобразуются в соответствии с содержанием команд. Более полную картину того, как процессор взаимодействует с оперативной памятью, вы получите в главах, посвященных основам программирования.
Оперативная память. Оперативную память можно представить как обширный массив ячеек, в которых хранятся числовые данные и команды в то время, когда компьютер включен. Объем оперативной памяти измеряется в миллионах байтов — мегабайтах (Мбайт).
Процессор может обратиться к любой ячейке оперативной памяти (байту), поскольку она имеет неповторимый числовой адрес. Обратиться к индивидуальному биту оперативной памяти процессор не может, так как у бита нет адреса. В то же время, процессор может изменить состояние любого бита, но для этого требуется несколько действий.
Материнская плата. Материнская плата — это самая большая плата персонального компьютера. На ней располагаются магистрали, связывающие процессор с оперативной памятью, — так называемые шины. Различают шину данных, по которой процессор копирует данные из ячеек памяти, адресную шину, по которой он подключается к конкретным ячейкам памяти, и шину команд, по которой в процессор поступают команды из программ. К шинам материнской платы подключаются также все прочие внутренние устройства компьютера. Управляет работой материнской платы микропроцессорный набор микросхем — так называемый чипсет.
Видеоадаптер. Видеоадаптер — внутреннее устройство, устанавливаемое в один из разъемов материнской платы. В первых персональных компьютерах видеоадаптеров не было. Вместо них в оперативной памяти отводилась небольшая область для хранения видеоданных. Специальная микросхема (видеоконтроллер) считывала данные из ячеек видеопамяти и в соответствии с ними управляла монитором.
По мере улучшения графических возможностей компьютеров область видеопамяти отделили от основной оперативной памяти и вместе с видеоконтроллером выделили в отдельный прибор, который назвали видеоадаптером. Современные видеоадаптеры имеют собственный вычислительный процессор (видеопроцессор), который снизил нагрузку на основной процессор при построении сложных изображений. Особенно большую роль видеопроцессор играет при построении на плоском экране трехмерных изображений. В ходе таких операций ему приходится выполнять особенно много математических расчетов.
В некоторых моделях материнских плат функции видеоадаптера выполняют микросхемы чипсета — в этом случае говорят, что видеоадаптер интегрирован с материнской платой. Если же видеоадаптер выполнен в виде отдельного устройства, его называют видеокартой. Разъем видеокарты выведен на заднюю стенку. К нему подключается монитор.
Звуковой адаптер. Для компьютеров IBM PC работа со звуком изначально не была предусмотрена. Первые десять лет существования компьютеры этой платформы считались офисной техникой и обходились без звуковых устройств. В настоящее время средства для работы со звуком считаются стандартными. Для этого на материнской плате устанавливается звуковой адаптер. Он может быть интегрирован в чипсете материнской платы или выполнен как отдельная подключаемая плата, которая называется звуковой картой.
Разъемы звуковой карты выведены на заднюю стенку компьютера. Для воспроизведения звука к ним подключают звуковые колонки или наушники. Отдельный разъем предназначен для подключения микрофона. При наличии специальной программы это позволяет записывать звук. Имеется также разъем (линейный выход) для подключения к внешней звукозаписывающей или звуковоспроизводящей аппаратуре (магнитофонам, усилителям и т.п.).
Жесткий диск. Поскольку оперативная память компьютера очищается при отключении питания, необходимо устройство для длительного хранения данных и программ. В настоящее время для этих целей широко применяют так называемые жесткие диски.
Принцип действия жесткого диска основан на регистрации изменений магнитного поля вблизи записывающей головки.
Основным параметром жесткого диска является емкость, измеряемая в гигабайтах (миллиардах байтов), Гбайт. Средний размер современного жесткого диска составляет 80 — 160 Гбайт, причем этот параметр неуклонно растет.
Дисковод гибких дисков. Для транспортировки данных между удаленными компьютерами используют так называемые гибкие диски. Стандартный гибкий диск (дискета) имеет сравнительно небольшую емкость 1,44 Мбайт. По современным меркам этого совершенно недостаточно для большинства задач хранения и транспортировки данных, но низкая стоимость носителей и высокая степень готовности к работе сделали гибкие диски самыми распространенными носителями данных.
Для записи и чтения данных, размещенных на гибких дисках, служит специальное устройство — дисковод. Приемное отверстие дисковода выведено на лицевую панель системного блока.
Дисковод CD-ROM. Для транспортировки больших объемов данных удобно использовать компакт-диски CD-ROM. Эти диски позволяют только читать ранее записанные данные — производить запись на них нельзя. Емкость одного диска составляет порядка 650-700 Мбайт.
Принцип хранения данных на компакт-дисках не магнитный, как у гибких дисков, а оптический.
Коммуникационные порты. Для связи с другими устройствами, например принтером, сканером, клавиатурой, мышью и т. п., компьютер оснащается так называемыми портами. Порт — это не просто разъем для подключения внешнего оборудования, хотя порт и заканчивается разъемом. Порт — более сложное устройство, чем просто разъем, имеющее свои микросхемы и управляемое программно.
Сетевой адаптер. Сетевые адаптеры необходимы компьютерам, чтобы они могли обмениваться данными между собой. Этот прибор следит за тем, чтобы процессор не подал новую порцию данных на внешний порт, пока сетевой адаптер соседнего компьютера не скопировал к себе предыдущую порцию. После этого процессору дается сигнал о том, что данные забраны и можно подавать новые. Так осуществляется передача.
Когда сетевой адаптер «узнает» от соседнего адаптера, что у того есть порция данных, он копирует их к себе, а потом проверяет, ему ли они адресованы. Если да, он передает их процессору. Если нет, он выставляет их на выходной порт, откуда их заберет сетевой адаптер очередного соседнего компьютера. Так данные перемещаются между компьютерами до тех пор, пока не попадут к адресату.






