для чего применяется осциллятор на рабочем месте
Осцилляторы. Виды и устройство. Работа и применение. Особенности
Осциллятором называют систему, в которой периодически совершается повторение какого-либо показателя. Осцилляторы в технике играют важную роль, так как любая физическая система представляется в виде осциллятора. Элементарными осцилляторами можно назвать маятник и контур колебаний. Электрические осцилляторы выполняют преобразование постоянного тока в переменный, образуют колебания определенной частоты управляющей схемой.
Какие бывают осцилляторы
Существует много различных видов осцилляторов:
Осцилляторы Ройера
Чтобы превратить постоянное напряжение в прямоугольные импульсы, либо для создания электромагнитных колебаний для других нужд, можно использовать осциллятор Ройера. Его еще называют генератором. Такое устройство состоит из двух биполярных транзисторов, двух резисторов, двух емкостей, а также трансформатор.
Транзисторы функционируют в режиме ключей, трансформатор дает возможность создать обратную связь, разъединить гальванически первичную и вторичную обмотки.
В начальный период времени, при подаче напряжения незначительные токи коллектора начинают протекать от источника по транзисторам. Транзистор VТ1 откроется раньше, магнитный поток, который пересекает обмотки, будет повышаться, а ЭДС обмоток будет также расти. В основных обмотках 1 и 4 ЭДС будут такими, что транзистор VТ1 откроется, а другой транзистор VТ2 закроется.
Ток коллектора VТ1 и магнитный поток в трансформаторе будут повышаться до момента его насыщения. В этот момент ЭДС обмоток будет равна нулю. При этом коллекторный ток транзистора VТ1 станет уменьшаться.
Полярность ЭДС обмоток изменится на обратную, и транзистор VТ1 станет закрываться, а транзистор VТ2 откроется, так как основные обмотки симметричны.
Коллекторный ток VТ2 будет повышаться до момента, когда прекратится повышение магнитного потока, и когда ЭДС обмоток снова станет нулевой, коллекторный ток VТ2 станет снижаться, магнитный поток – уменьшаться, ЭДС изменит свою полярность. VТ2 закроется, при этом откроется транзистор VТ1, и весь процесс повторится.
Частота осциллятора Ройера взаимосвязана с параметрами блока питания и со свойствами магнитопровода по следующей зависимости:
U п — напряжение; ω — число витков; S — сечение сердечника; B н — индукции.
При насыщении сердечника ЭДС будет неизменной, поэтому при подключении нагрузки к вторичной обмотке, форма импульсов ЭДС станет прямоугольной. Сопротивления в основных цепях транзисторов выравнивают функционирование преобразователя, а емкости помогают оптимизировать форму напряжения на выходе.
Генераторы Ройера могут функционировать на частотах, достигающих нескольких сотен кГц. Это зависит от магнитных характеристик магнитопровода трансформатора.
Сварочные осцилляторы
Чтобы облегчить поджигание дуги во время сварки и для ее устойчивости используют так называемые сварочные устройства. Это генераторы повышенной частоты, служащие для эксплуатации с обычными источниками напряжения. Сварочный осциллятор выполнен в виде искрового генератора колебаний на основе повышающего трансформатора низкой частоты с разностью потенциалов на вторичной обмотке до 3000 вольт.
В схеме также имеется блокировочный конденсатор, обмотка связи, контур колебаний, разрядник. С помощью контура колебаний, являющимся основной частью осциллятора, действует трансформатор высокой частоты.
Колебания ВЧ проходят по трансформатору, и ВЧ напряжение поступает на дуговой зазор. Блокировочная емкость предохраняет шунтирование источника напряжения дуги. В цепь сварки также входит дроссель для качественной изоляции обмотки.
Сварочный осциллятор до 0,3 кВт выдает импульсы в несколько мс. Этого хватает для быстрого поджигания электрической дуги. Ток ВЧ и высокого напряжения накладывается на действующую сварочную цепь.
Виды сварочных осцилляторов
Устройства постоянного действия функционируют без перерыва при сварке, образуя дугу наложением дополнительного тока ВЧ и напряжения до 6 кВ. Возбуждение электрической дуги осуществляется с помощью наложения высокой частоты на токоведущие части. Дуга может возникать без касания электрода со свариваемыми деталями. Такой ток не причиняет вреда работнику, если соблюдены все требования охраны труда. Электрическая дуга ВЧ тока горит ровным пламенем даже при незначительном токе.
Большей эффективностью обладают сварочные аппараты при последовательной схеме включения, так как при этом нет необходимости в высоковольтной защите. В процессе эксплуатации от разрядника слышны легкие потрескивания по промежутку до двух миллиметров. Этот зазор настраивают перед началом сварки специальным регулировочным винтом, при отключенном питании.
При работе на сварочном аппарате от переменного тока применяют импульсные устройства, которые способны поджечь электрическую дугу при изменении полярности тока. Это такие аппараты, которые предназначены для подачи синхронных импульсов в тот момент, когда меняется полярность. Вследствие этого намного упрощается повторное образование электрической дуги.
Это дает возможность уменьшить напряжение холостой работы трансформатора до 40 вольт. Импульсные устройства используют только для сварки с применением защитных газов неплавящимися электродами. Импульсные сварочные устройства имеют повышенную устойчивость в работе, по сравнению с обычными осцилляторами. Они не образуют радиопомех, однако, из-за нехватки напряжения не могут обеспечить дугу без осциллятора на первоначального розжига и импульсного возбудителя.
В устройство такого осциллятора входят специальные емкости, получающие заряд от особого блока питания. Они поддерживают стабильное горение дуги.
Такое устройство используется для сварки электродами для обработки аргона, цветных металлов, а также и обычными электродами.
Принцип действия
Основной процесс действия электрического осциллятора можно показать на примере контура колебаний, который состоит из конденсатора С и индуктивности L. После подключения выводов заряженного конденсатора с катушкой, он начинает разряжаться. Вследствие чего энергия конденсатора медленно модифицируется в электромагнитное поле.
После полного разряда емкости, энергия переходит в катушку. После этого заряд продолжает перемещаться по катушке, и снова заряжает конденсатор в обратной полярности, какая была сначала.
Затем конденсатор снова начинает разряжаться на катушку. И так все периоды колебаний этот процесс будет иметь повторения, до тех пор, пока не затухнут колебания вследствие рассеивания энергии в диэлектрике между пластинами емкости, на сопротивлении обмотки катушки.
В этом примере контур колебаний — наиболее простой осциллятор. В нем происходят изменения показателей: индукции, тока, напряженности, напряжения между пластинами емкости, заряда емкости. При этом существуют затухающие свободные колебания.
Для того, чтобы сделать колебания незатухающими, требуется восполнение рассеивания электрической энергии. При восполнении энергии необходимо следить за тем, чтобы амплитуда колебаний оставалась постоянной, и не выходила за пределы заданной величины. Чтобы достигнуть выполнения этой задачи в схему включают цепь обратной связи.
В результате осциллятор становится схемой усилителя с обратной связью. В этой схеме часть выходного сигнала поступает на активный элемент управляющей схемы. Итогом ее действия в колебательном контуре возникают синусоидальные колебания, которые имеют неизменную частоту и амплитуду. Другими словами синусоидальные осцилляторы функционируют благодаря притоку энергии, поступающей от активных элементов к пассивным. При этом процесс поддерживается с помощью цепи обратной связи. Форма колебаний изменяется незначительно.
Требования к использованию
Для того, чтобы применять осцилляторы, необходима их регистрация в специальных органах электросвязи. Также необходимо соблюдать и другие условия эксплуатации:
В настоящее время в торговой сети осцилляторы широко представлены в специализированных магазинах. Также его можно изготовить самостоятельно. Чтобы изготовить осциллятор своими руками, необходимы специальные знания в электротехнике по вопросам подключения электрических цепей, правильный выбор составных частей и деталей. Основным элементом является трансформатор высокого напряжения.
Самодельные осцилляторы можно изготовить по самой элементарной схеме. В состав устройства будет входить трансформатор, регулирующий напряжение, и разрядник, который выдерживает прохождение мощной электрической дуги.
Управление устройства осуществляется кнопкой, которая одновременно подключает разрядник и подачу газа в область производства сварки. Высокочастотные импульсы, которые должны обеспечить надлежащую эффективность сварки, создаются трансформатором, имеющим высокое напряжение и разрядником.
На выходе такой сварочный аппарат имеет два контакта: положительный и отрицательный. По положительному электроду поступает ток от трансформатора, подключается к сварочной горелке, а второй провод подключается на свариваемые детали.
Меры безопасности
Для работы с осциллятором требуется квалификация и навык работы со сварочными аппаратами. При использовании подобных устройств требуется соблюдение безопасных приемов работы.
Во время эксплуатации необходимо непрерывно осуществлять контроль за правильностью подключений к сварочной цепи, контролировать надежность контактов на их качество соединения и исправность. Также при работе необходимо применять защитный кожух, который одевается и снимается с устройства только при отключенном питании. Также необходимо постоянно следить за состоянием разрядника, очищать его поверхность от нагара с помощью шлифшкурки.
Применение осциллятора для сварки
При необходимости заварить швы с дефектами или сварить металлоконструкции из стали сварщики используют электроды с покрытием и инвертор, выдающий постоянный ток. Также в сварке нержавеющей стали часто применяются вольфрамовые электроды. Вне зависимости от выбранного электрода или модели сварочника часто возникает проблема правильного и быстрого розжига дуги. Чтобы решить эту проблему достаточно подключить в цепочку оборудования сварочный осциллятор.
В этой статье мы расскажем, что такое осциллятор в сочетании с остальным сварочным оборудованием, каков принцип действия и как применять его в своей работе.
Общая информация
Сварочный осциллятор для сварки алюминия или любого другого металла — это прибор, генерирующий ток высокой частоты. Благодаря этому току электрод лучше взаимодействует с поверхностью металла. Чтобы использовать осциллятор нужен сварочный аппарат и держатель электродов. В данном случае осциллятор устанавливается между ними. Наиболее известные модели осцилляторов: ОССД 300 и ОССД 400, ОП 240, ОП 400.
В целом, такие приборы работают по следующему принципу: осциллятор генерирует кратковременный электрический импульс, зажигая дугу. Импульс исчезает сразу после розжига дуги. При этом нет необходимости в физическом контакте электрода и поверхности металла. Со стороны этот импульс выглядит, как маленький разряд молнии между концом электрода и свариваемой поверхностью. Кстати, осциллятор можно сделать своими руками.
Устройство
Большинство осцилляторов, представленных в магазинах, имеют схожее строение и состоят из выпрямителя, конденсаторов (накапливающих заряд), источника питания, отдельного узла (отвечающего за генерирование электрического импульса) с колебательным контуром и разрядником, блока управления, датчика напряжения и повышающего трансформатора. В моделях для работы с аргоном также есть газовый клапан.
Принцип работы
Прибор не просто генерирует электрический импульс, он изменяет входящее напряжение, повышая его частоту и вольтаж. Весь этот процесс занимает секунду. Давайте подробнее остановимся на принципе работы осциллятора.
Сначала запускается электрическая цепь путем нажатия на кнопку горелки. Выпрямитель выравнивает поступающий ток, переводя его в однонаправленное состояние. Затем ток накапливается в конденсаторах. Впоследствии ток высвобождается и попадает в колебательный контур. Именно здесь повышается вольтаж. Если прибор предназначен для сварки аргоном, то одновременно открывается газовый клапан.
Образуется тот самый импульс, с виду напоминающий молнию. Он связывает конец электрода и поверхность свариваемого металла. К металлу предварительно подсоединяют кабель массы. Вот и все! Сварочный аппарат, включенный в эту цепь, позволяет сварить детали. А осциллятор сварочный (например, модель ОССД 300 или ОП 240, ОП 400) обеспечивает стабильное горение дуги.
Особенности
Существует несколько типов осцилляторов и все они применяются для конкретных задач. Но мы начнем с характеристик, которые объединяют все типы осцилляторов. Итак, все приборы способны преобразовывать ток до 5000В и повышать частоту до 500 кГц.
Теперь о различиях. Существует осциллятор для сварки алюминия или любого другого металла, который работает непрерывно. Благодаря непрерывному действию обеспечивается стабильное горение дуги. К этому типу относится большинство современных приборов, продающихся в магазине. Такой осциллятор следует подключать последовательно, чтобы избежать повышенного напряжения, из-за которого вы можете пострадать. Не забывайте соблюдать технику безопасности на рабочем месте. С помощью таких приборов можно вести сварку с использованием малого значения тока и легко разжигать дугу. Зачастую такой осциллятор устанавливают на сварочный инвертор или трансформатор, для работы с электродами с покрытием.
Также есть осцилляторы для бесконтактного возбуждения дуги при сварке с использованием аргоновых аппаратов. Они отличаются тем, что имеют газовый клапан. Обычно сварку аргоном производят с помощью вольфрамовых электродов, которые могут часто тупиться при поджиге методом постукивания. Из-за этого шов получается неаккуратным и неровным, а дуга горит нестабильно. Вы, конечно, можете постоянно затачивать электрод, но мы все же рекомендуем использовать осциллятор.
Применение
Начинающие сварщики часто пытаются зажечь сварочную дугу методом постукивания или чирканья, даже если это требует массу времени и сил. Упростите себе задачу, ведь осциллятор сварочный специально разработан, чтобы без труда возбудить дугу и сварить цветные металлы. Вы без труда сделаете качественный и прочный шов на деталях из нержавеющей стали или алюминия. Также осцилляторы устанавливают на сварочный аппарат, предназначенный для плазменной резки.
Также прибор можно применять при сварке тонких металлов. Достаточно установить минимальное значение тока в инверторе и включить в цепь осциллятор. Дуга не будет прерываться даже на крайне маленьких значениях тока, что особенно удобно при сварке непрерывных длинных швов.
Вместо заключения
Сварка с осциллятором (например, с моделью ОССД 300 или ОП 240) упрощает и ускоряет сварочные работы, экономя расходники. Не нужно беспокоиться о стабильности горения дуги и о том, как быстро зажечь ее. Особые умельцы могут сделать осциллятор своими руками. Испробуйте осциллятор сварочный и поделитесь своим опытом в комментариях к нашей статье. Желаем удачи!
Зачем сварщику нужен осциллятор, как он работает
В работе с электродуговой сваркой необходимо обладать определенным навыком. Он потребуется не только при формировании шва, но и уже на начальной стадии, когда происходит процесс розжига дуги. В классическом представлении дуга возникает в результате соприкосновения электрода с поверхностью металла. Чтобы 1 см воздуха стал проводником, необходимо приложить разность потенциалов примерно в 30 тысяч вольт. Естественно, такое напряжение слишком высоко даже для современных инверторов, поэтому единственной возможностью зажечь дугу является соприкосновение с постепенным удалением электрода.
Результат такой манипуляции напрямую зависит от мастерства сварщика, однако даже профессионалы не гарантируют того, что стабильная дуга образуется после первого соприкосновения.
Зачастую сварщик совершает колебательные движения держателем, выполняя при этом постукивания о поверхность детали с целью нарушения слоя окисла. Особенно явно такие сложности возникают при работе с цветными металлами. Если учесть то, что по регламенту сварка цветных металлов ведется малыми токами, то вероятность получить стабильную дугу резко снижается.
Избежать подобных проблем помогает устройство, более известное, как осциллятор для сварки. Он выступает в качестве дополнительного оборудования к источнику питания при ведении аргонодуговой сварки. Для его использования мастер обязан обладать достаточным объемом знаний, начиная от устройства и заканчивая способом подключения.
Принцип действия и назначение
Применение осциллятора позволяет обеспечить бесконтактный розжиг дуги, что существенно облегчает задачу сварщика, а также влияет на стабильность электрической дуги в процессе работы. Хотя мы отметили, что устройство является обособленным элементом, иногда оно интегрировано в сварочный инвертор, то есть, источник питания и осциллятор находятся в одном корпусе. При достаточном объеме знаний в области электроники и электричества возможно изготовление самодельного осциллятора. Именно на этом обычно концентрируют свое внимание читатели, так как экономия денежных средств всегда выглядит привлекательно.
Начнем с того, что сформулируем основную идею работы данного устройства. При работе сварочного инвертора на электроды подается напряжение 220 В. Если сварка ведется переменным током, то его частота составляет 50 Гц. «Поверх» этого напряжения в импульсном режиме подается высокая разность потенциалов и высокая частота. Количество таких импульсов, как правило, невелико. Добавочный высокочастотный ток должен лишь разжечь дугу. На это уходят доли секунды. Для качественно оценки следует подчеркнуть, что амплитуда колебаний напряжения достигает 6 кВ, а частота при этом составляет 500 кГц. Но за счет малой продолжительности импульса мощность электрического тока не превышает 300 Вт.
Среди пользователей возникает лаконичный вопрос: «Может ли осциллятор генерируемым током проводить сварку металлов?». Действительно, это было бы логично, однако низкая мощность не позволяет расплавить металл и присадку, поэтому импульс используется исключительно для пробоя воздушного зазора. В задачи сварщика входит лишь приближение электрода на расстояние примерно 5 мм и нажатие кнопки. В осцилляторах интегрированного типа кнопка локализуется прямо на держателе. Длительность импульса соответствует времени удержания кнопки. Далее сварка проводится в обычном режиме.
Высокочастотный ток протекает через диэлектрик (воздух) после активной ионизации. Практически моментально возникает дуговой разряд. Одновременно ионизированный воздух становится проводником, и основной ток сварочного аппарата течет, образуя электрическую дугу. Если процесс сварки автоматизирован и инвертор обладает микропроцессором, то осциллятор в процессе формирования шва автоматически включается при необходимости, когда возникает тенденция гашения дуги. Примером может служить ситуация с перепадом напряжения или случайного движения руки сварщика в сторону. В результате работы осциллятора можно получить качественный и равномерный шов.
Устройство и работа
Если с назначением осциллятора разобраться не так сложно, то для понимания его работы потребуются некоторые знания в области физики. Первым делом необходимо понимать, что с помощью этого прибора мы получаем дистанционный розжиг дуги и в процессе сварки стабильную дугу, которая статична по отношению к изменяющемуся зазору между электродом и поверхностью металла.
Осциллятор принципиально состоит из нескольких блоков:
Естественно, нами не учтены различные датчики, обеспечивающие автономность работы и систему контроля. При реализации интегрированной схемы, когда осциллятор является составной частью аргонодугового инвертора, устройство оснащено клапаном подачи газа. Последний управляется микропроцессором и подает аргон в нужный момент времени. Осциллятор оснащен системой безопасности, обеспечивающей бесперебойную работу электрической цепи, а также сохранность жизни и здоровья самого сварщика. От поражения электрическим током защищает конденсатор. В случае его пробоя в работу вступает плавкий предохранитель, размыкающий цепь при превышении силы тока.
Алгоритм работы осциллятора можно представить в виде последовательности процессов. Рабочее напряжение бытовой сети поступает на первичную обмотку повышающего трансформатора. После преобразования тока на вторичной обмотке индуцируется ЭДС заданной величины (5-6 тысяч вольт). На данный момент частота тока равна промышленной частоте, то есть, 50 Гц. К обмотке вторичной катушки подключен конденсатор колебательного контура. Он начинает заряжаться, но так как собственная частота колебательного контура превышает частоту тока на обмотке, то в контуре возникают колебания. Изначально контур разомкнут, но пробой в разряднике играет роль своеобразного ключа и замыкает цепь. Колебания тока в контуре поступают на электрод.
Одним из примечательных свойств конденсатора является пропускание переменного электрического тока. Емкостное сопротивление с повышением частоты уменьшается. Блокировочный конденсатор является препятствием для низкочастотного тока, которым питается сам инвертор, однако пропускает высокочастотный ток. Таким образом, обеспечивается защита осциллятора от короткого замыкания.
Виды, подключение
По принципу работы устройства делятся на два типа:
При работе осциллятора первого типа сварочный ток суммируется с высокочастотным током высокого напряжения. Зажигание дуги происходит без непосредственного контакта электрода с поверхностью металла. При малом значении силы тока дуга остается стабильной. Исключается разбрызгивание металла и поражение сварщика электрическим разрядом. Такой осциллятор может быть включен в сеть последовательно или параллельно. При последовательном соединении устройство включается в разрыв кабеля электрода. Подобное подключение позволяет использовать осциллятор более эффективным образом. Нет потери энергии на обеспечение защиты от высокого напряжения.
Импульсный осциллятор подключается параллельно и используется преимущественно в тех случаях, когда требуется вести сварочные работы переменным током. Вся сложность заключается в том, что устройство должно реагировать на смену полярности, причем за минимальное время. Поддержать дугу, повысив ее стабильность, может только ток высокой частоты импульсного типа. Если применить при такой сварке аппараты непрерывного действия, то дуга будет получена без особых проблем, однако повторное ее зажигание уже невозможно, то есть осциллятор будет выполнять только одну свою функцию.
Наличие в схеме конденсаторов позволяет сделать более функциональное устройство. Накопленный электрический заряд позволяет производить повторные импульсы и поджигать дугу в процессе формирования шва, если сварщик случайно отклонил электрод на большое расстояние. В схеме устройства без обратной связи не обойтись. Именно управляющая система обеспечивает синхронизированный разряд конденсатора.















