для чего применяется тепловое реле
Тепловое реле: устройство, принцип работы, виды и особенности выбора
Долговечность оборудования во многом зависит от перегрузок, которым оно подвергается в процессе эксплуатации. Протекание токов, превышающих номинальные, вызывает дополнительное повышение температуры и преждевременное старение изоляции. Чем выше перегрузки, тем реже они допустимы. Тепловые реле – это специальные устройства, которые отключают потребляющее электроэнергию оборудование при перегрузках. Они предотвращают поломку электромоторов из-за превышения нагрузки по показателям рабочего тока. Любой двигатель имеет свой номинальный рабочий ток, длительное критическое превышение которого вызывает перегрев обмоток силовой установки, разрушает изоляционный слой и приводит к выходу из строя электромотора в целом.
Конструкция и принцип работы реле тепловой защиты
В основе работы тепловых реле лежит закон физики, сформулированный учеными Джоулем и Ленцем еще в 19 веке и определяющий зависимость выделенного тепла от силы тока на конкретных участках электрической цепи. В составе конструкции устройств этого типа предусмотрена спираль – излучатель тепла. Рядом с ней установлена биметаллическая пластина, которая реагирует на излучаемое тепло.
Для изготовления термопластин используют два металлических сплава с различной теплопроводностью, которые во время нагревания/охлаждения меняют свою геометрию. Это свойство биметаллических элементов и лежит в основе работы реле тепловой защиты. Увеличение либо уменьшение тока нагрузки приводит к изменению пространственного расположения и механическому воздействию на толкатель, который размыкает или замыкает контактную группу прибора, подключенную к обмоткам магнитного пускателя (МП). Пускатель мотора срабатывает и отключает нагрузки от электросети.
Стандартная конструкция теплового реле предусматривает:
На работу реле тепловой защиты с биметаллическими пластинами воздействует температура окружающего воздуха, которая дополнительно нагревает рабочие элементы конструкции прибора. Чтобы исключить это явление, устройства оснащаются компенсирующими биметаллическими пластинами, которые изгибаются в противоположную сторону по отношению к основным элементам.
Компенсатор регулирует ток срабатывания устройства. Для регулировки применяются эксцентрики с разделенной на две части шкалой. При повороте ручки компенсатора влево значение тока срабатывания уменьшается, а при повороте вправо – увеличивается. Значения тока срабатывания реле регулируют увеличением/уменьшением зазора между толкателем и главной пластиной, за счет действия эксцентрика на дополнительную биметаллическую пластину.
Важно! В случае обрыва либо отключения одной из фаз питания в трехфазной сети, токи нагрузки в оставшихся двух фазах увеличиваются, в результате чего срабатывает тепловое реле. Поэтому расцепитель является основной защитой электродвигателей от работы в аварийных ситуациях при оборванной фазе.



Виды реле защиты от тепловых перегрузок
На рынке электротехнического оборудования представлен большой выбор модулей тепловой защиты для электрических силовых агрегатов. Каждый тип устройства подбирается для конкретной ситуации и определенного типа силовых установок.
Основные разновидности тепловых реле:
Все перечисленные выше разновидности тепловых реле служат для одной цели – они защищают электродвигатели и другие силовые электроустановки от токовых перегрузок, при которых увеличивается температура рабочих частей агрегатов до критических и субкритических значений.
Как выбрать устройство тепловой защиты
Для правильного выбора подходящей модели теплового реле следует учитывать мощность защищаемого электромотора. Основными параметрами защитных устройств являются:
Также в маркировке теплового реле обязательно указывается режим возврата (автоматический или ручной).
В некоторых моделях предусмотрена функция «недогрузки», которая позволяет обнаруживать уменьшение тока в цепи, а также опция компенсации температуры окружающей среды – такие модификации считаются самыми удобными и надежными. Кроме того, выпускаются тепловые реле с дополнительными световыми индикаторами. Датчики и светодиоды отображают сигналы включения и состояния.
Поэтому выбор конкретной модели зависит от многих факторов эксплуатации теплового реле – температуры окружающей среды, места установки, мощности подключенного оборудования, необходимости использования средств аварийного оповещения.
Реле со световыми индикаторами чаще всего используют на предприятиях промышленности, где требуется оперативное реагирование на аварийные ситуации. Благодаря светодиодным датчикам состояния, оператор может контролировать рабочие процессы.
Цена реле зависит от многих факторов. На стоимость влияют общие технические характеристики, наличие дополнительных функций, используемые в производстве материалы, фирма-производитель. Реле от известных брендов обязательно комплектуются паспортом с подробным описанием технических параметров, а также подробной инструкцией по подключению.
Особенности установки теплового реле
Обычно реле монтируется совместно с магнитным пускателем, обеспечивающим подключение и запуск двигателя. Некоторые модели устанавливаются в качестве самостоятельных приборов на DIN-рейку или на монтажные панели (ТРН или РТТ). Даже если реле ТРН имеет лишь пару входящих подключений, фаз все равно 3. Отключенные фазные провода выводятся с пускателя к мотору в обход устройства. Изменения тока будут происходить пропорционально в каждой фазе, в результате чего достаточно контроля только двух из них. Реле можно подключать и при помощи токовых трансформаторов – это целесообразно при использовании мощных электромоторов.
В любом случае необходимо избегать ошибок при монтаже, к примеру, нельзя подключать тепловое реле с параметрами, которые не соответствуют характеристикам электромотора.
Преимущества перед обычными автоматами
По своей конструкции тепловое реле является тем же устройством автоматического отключения электроустановок от сети питания. Однако в отличие от простых автоматов, которые включают/отключают питание, у реле есть два достоинства:
Кроме того, реле обладают меньшими габаритами и массой, более доступной ценой, простой конструкцией и надежностью эксплуатации. Среди недостатков – необходимость периодической настройки и проверки.
Заключение
Тепловые реле (расцепители) – важные элементы системы защиты электродвигателей и других приборов. Устройства защищают практически от любых перегрузок. К тому же реле не подвержены ложным отключениям нагрузки в случае кратковременных скачков тока, что выгодно отличает их от входных автоматов. Их можно устанавливать не только совместно с магнитными пускателями, но и самостоятельно.
Принцип работы и схема подключения теплового реле
Защита электродвигателей, магнитных пускателей и прочей аппаратуры от нагрузок, вызывающих перегрев, осуществляется при помощи специальных устройств тепловой защиты. Для того чтобы осуществить правильный выбор модели тепловой защиты, нужно знать ее принцип работы, устройство, а также основные критерии выбора.
Устройство и принцип работы
Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.
Тепловое реле, устройство которого составляют простейшие элементы:
Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.
Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).
Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.
Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.
Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.
При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.
Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.
Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.
Тепловое реле: устройство и принцип действия
Для обеспечения безопасной эксплуатации электротехнического оборудования используются разнообразные электронные приборы и другие приспособления. Они предназначены для контроля нормативных параметров работы электрических установок, а в случае аварийных ситуаций для их отключения. Ярким представителем таких устройств является электротепловое реле, отключающее электроустановку от питающей электрической сети в случае длительного превышения номинального значения рабочего тока. Термореле — это автомат отключения прибора, потребляющего электроэнергию, при серьезных перегрузках оборудования по току электропитания.
Области использования прибора
Электротепловые реле предназначены для предотвращения выхода из строя электромоторов от перегрузок по показателям рабочего тока, в результате которых происходит превышение нормативных показателей рабочей температуры последних. Любой электрический двигатель имеет номинальный рабочий ток. Критическое превышение этой технической характеристики в течение длительного времени приведет к перегреву обмоток силовой установки, разрушению изоляционного слоя и выходу из строя мотора в целом.
Устройство электротепловой защиты отключит электрический двигатель и не допустит аварии и выхода из строя электромотора. Термореле защиты от перегрузок применяются и в других сферах народного хозяйства, быту и производстве, но основное их предназначение — это защита электрических силовых установок от увеличения тока нагрузки до критических значений. Без этого прибора безопасно эксплуатировать электрические двигатели невозможно!
Конструкция и принцип работы прибора
Надежность работы энергетических установок напрямую зависит от различных перегрузок, которым данное устройство подвергается в период эксплуатации. Для каждого устройства существуют предельные величины тока и их длительность, при которых оборудование функционирует в нормальном и безопасном режиме. При номинальных значениях тока длительность работы электродвигателя или любой другой электроустановки ограничена только механической прочностью вращающихся деталей. При длительном превышении этого значения возникает аварийная ситуация.
Для обеспечения защиты электрических двигателей и другого оборудования от перегрузок широко используются устройства с биметаллическими элементами. Эти приборы работают в соответствии с законом физики, описанным учеными Джоулем и Ленце в 19 веке и определяющим зависимость выделенного тепла от силы тока на конкретном участке электрической цепи. Именно это закон является определяющим в работе электротеплового реле (расцепителя). В составе конструкции прибора имеется спираль, которая является излучателем тепла. Непосредственно рядом с ней монтируется биметаллическая пластина, реагирующая на излучаемое тепло.
Термопластины изготовлены из двух металлических сплавов с различной теплопроводностью, которые при нагреве/охлаждении меняют свою геометрию. Это свойство биметаллических элементов заложено в принцип функционирования теплового расцепителя. При любом увеличении или уменьшении тока нагрузки, рабочие пластины меняют свое пространственное расположение и механически воздействуют на толкатель, который размыкает или замыкает контактные группы термореле, подключенные к обмоткам магнитного пускателя (МП). Пускатель двигателя срабатывает и отключает нагрузку от электрической сети. Стандартная конструкция электротеплового реле представлена на следующей картинке.
На работу тепловых расцепителей с биметаллическими пластинами оказывает воздействие температура окружающего воздуха, дополнительно нагревая рабочие элементы конструкции прибора. Для исключения этого явления все устройства этого типа снабжены дополнительными компенсирующими биметаллическими пластинами, изгибающимися в противоположную сторону относительно основных элементов.
Компенсатор является регулятором тока срабатывания устройства. Для регулировки используется эксцентрик со шкалой, разделенной на две части. При повороте влево ручки компенсатора значение тока срабатывания уменьшается, а при смещении вправо соответственно увеличивается. Регулировка значений тока срабатывания расцепителя происходит путем увеличения/уменьшения зазора между толкателем и основной пластиной, за счет воздействия эксцентрика на дополнительную биметаллическую пластину.
Важно! При обрыве или отключении одной из фаз питания, в трехфазной сети, ток нагрузки в оставшихся двух фазах увеличивается, что приводит к срабатыванию электротеплового реле. Исходя из этого, можно сказать, что тепловой расцепитель является защитой электродвигателя от работы в аварийной ситуации с оборванной фазой.
Виды термореле защиты
Следует отметить, что на современном рынке электротехнических изделий представлены разные типы модулей тепловой защиты электрических силовых агрегатов. Каждый из этих типов устройств используется в конкретной ситуации и для определенного вида электрического оборудования. К основным разновидностям тепловых реле защиты можно отнести следующие конструкции.
Из вышеприведенной информации видно, что в настоящее время существует несколько различных типов электротепловых реле. Все они используются для решения одной-единственной задачи — защиты электрических двигателей и других силовых электроустановок от токовых перегрузок с повышением температур рабочих частей агрегатов до критических значений.
Где купить
Максимально быстро приобрести устройство можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Схема подключения теплового реле
Чаще всего, подключение теплового реле осуществляется непосредственно к магнитному пускателю. Силовые контакты устройства позволяют выполнить его монтаж на МП без проводов. Также существуют модели тепловой защиты, которые можно установить как самостоятельный модуль на монтажную панель или DIN-рейку в электрический шкаф. На следующем рисунке представлена структурная схема подключения теплового реле в соответствии с действующим ГОСТом.
На следующем рисунке приведена схема управления электродвигателем, отключающим его от сети в случае возникновения аварийной ситуации: перегрузке по току или обрыву провода одной из фаз.
Для непосвященного человека все эти принципиальные схемы не значат ровно ничего, поэтому на следующей картинке будет представлена более доступная для понимания простым потребителем схема подключения электротеплового реле с фотографиями всех элементов, входящих в систему защиты электрических моторов от токовых перегрузок.
Коротко рассмотрим, как действует данная компоновка защиты электродвигателей. Входной автомат обеспечивает подачу одной фазы через нормально-замкнутую аварийную кнопку «Стоп» на разомкнутую кнопку «Пуск». При ее включении, напряжение питания попадается на обмотку магнитного пускателя, который последовательно включает электромотор. Все фазы питающей электросети, поступающие на электрический двигатель, проходят через обмотки реле с биметаллическими элементами. В случае увеличения тока нагрузки до максимальных значений срабатывает тепловая защита и силовая установка обесточивается.
Внимание! Электротепловое реле устанавливается в цепь питания после всех типов контакторов, но перед электродвигателем или другим электрическим оборудованием. Включение размыкающего цепь устройства выполняется кнопкой «Стоп». Все элементы системы защиты соединены последовательно.
Выбор электротеплового реле
Выбор термореле зависит от многих факторы его эксплуатации: температуры окружающей среды; где оно установлено; мощности подключенного оборудования; необходимых средств аварийного оповещения и так далее. Чаще всего, потребитель делает выбор, основываясь на следующих технических характеристиках прибора.
Цена реле тепловой защиты может колебаться в очень широком диапазоне. Стоимость устройства зависит от многих факторов: общих технических характеристик, наличия дополнительных функций, используемых при производстве материалов, а также от популярности производителя прибора. Минимальная цена термореле около 500 рублей, а максимальная может доходить до нескольких тысяч. Реле от известных производителей, в обязательном порядке, комплектуются паспортом с подробным описанием технических характеристик, а также полной инструкцией по подключению прибора к электроустановкам.
Преимущества устройства
По своей сути, тепловое реле является автоматическим устройством отключения электрооборудования от сети питания. Но в отличие от простого автомата включения/отключения электротепловое реле имеет ряд следующих существенных преимуществ:
К другим достоинствам тепловых реле можно отнести малые габариты, массу и, конечно же, стоимость, а также простоту конструкции и высокую эксплуатационную надежность. Определенным недостатком устройства является необходимость в периодических настройках и поверках.
Заключение
Электротепловое реле (расцепитель) — это один из самых важных элементов системы защиты электрических двигателей и другого электрооборудования. Данное устройство способно защитить электроустановку от любых перегрузок. Тепловой расцепитель не подвержен ложным отключениям нагрузки при кратковременных скачках тока, что выгодно отличает его от входного автомата. Термореле защиты можно монтировать не только совместно с МП, но и как самостоятельное защитное устройство.
P.S. Подключайте тепловое реле к электросиловым установкам в полном соответствии c инструкцией по эксплуатации. Если у вас нет достаточного опыта в выполнение таких работ, то лучше обратиться к специалистам. Самостоятельно ремонтировать прибор можно только при наличии элементарных знаний в области электротехники. В противном случае ремонт термореле следует производить в специализированном сервисном центре!
Видео по теме
Выбор теплового реле
Схема подключения
Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т.к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.
В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.
Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.
Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.
Похожие:
| Методические указания составлены в соответствии с примерной программой… «Монтаж, эксплуатация и ремонт электрооборудования зданий» согласованной Управлением государственной службы, кадров и учебных заведений… | Эксплуатация электрооборудования в электрических сетях Мероприятия, направленные на повышение эксплуатационной надежности электрооборудования |
| Примерная программа профессионального модуля техническая эксплуатация… Примерная программа профессионального модуля разработана на основе Федерального государственного образовательного стандарта по специальностям… | Программа итоговой государственной аттестации выпускников «Политехнического… «Монтаж, наладка и эксплуатация электрооборудования промышленных и гражданских зданий» (очное обучение) |
| Техническая эксплуатация и обслуживание дополнительного электрооборудования… Обучающийся 2-го курса по специальности 140448 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования… | Программа вступительного экзамена в аспирантуру по специальности… «Энергетическое оборудование высокого напряжения и его надежность», «Молниезащита» «Перенапряжения и координация изоляции», «Эксплуатация… |
| 08. 02. 09 «Монтаж, наладка и эксплуатация электрооборудования промышленных… «Монтаж, наладка и эксплуатация электрооборудования промышленных и гражданских зданий» | Аннотация по дисциплине «Диагностика, эксплуатация и ремонт электроэнергетического оборудования» Целью освоения дисциплины «Диагностика, эксплуатация и ремонт электроэнергетиче-ского оборудования» является изучение основ и особенности… |
| Экзаменационные вопросы пм 02 Эксплуатация электрооборудования электрических… | Рабочая программа профессионального модуля … |
| Казанский филиал федерального государственного бюджетного образовательного Специальность 26. 05. 07 «Эксплуатация судового электрооборудования и средств автоматики» | Инструкция Слесаря-электрика по ремонту электрооборудования Слесарь-электрик по ремонту электрооборудования по ремонту и обслуживанию электрооборудования относится к категории рабочих |
| Утверждено правлением тсж «жк промышленный» Должностные обязанности Электрика … | Среднего профессионального образования Электромонтер по ремонту и обслуживанию электрооборудования( по отраслям); 19. 01. 17 Повар, кондитер; 38. 02. 01 Экономика и бухгалтерский… |
| Самостоятельная работа студентов (срс) охватывает все аспекты изучения… Монтаж, наладка и эксплуатация электрооборудования промышленных и гражданских зданий | Тема: Наладка и эксплуатация электрооборудования металлорежущих станков Металлорежущие станки предназначены для изготовления деталей путем механической обработки заготовок режущим инструментом. Металлорежущие… |
Руководство, инструкция по применению
Инструкция, руководство по применению
Проверка
Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:
После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.
Характеристики реле
При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:
Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.
Виды тепловых реле
Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.
На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию. Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле. К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.
Конструкция
Начнем с того, что расскажем, из чего состоит реле тепловой защиты. В основу работы РТ заложено явление описано физическим законом Джоуля-Ленца:
Количество тепла выделяемому на участке электрической цепи пропорционально квадрату силы тока и сопротивления данного участка.
Данное явление с успехом используется в тепловом расцепителе. Короткий участок цепи, выполняющий роль теплового излучателя, намотан спиралью на изолятор. Весь ток, проходящий через электрическую машину, проходит через данный участок. Непосредственно возле спирали стоит биметаллическая пластина, которая при нагревании изгибается и воздействует на контактную группу. Пластина состоит из двух разнородных металлов, имеющих разный коэффициент расширения при нагреве, объединенных в один элемент.
На фото ниже изображен разрез действующего аппарата. Через проводники проходит три фазы питания на электрический двигатель. Обмотка нагрева расположена сверху биметаллической пластины для уменьшения ложного срабатывания от внешнего воздействия. Пластины упираются в подвижную планку, которая толкает механизм расцепителя. Сверху расположен пружинный регулятор токовой установки, для точной настройки пределов срабатывания, и две группы контактов (открытые NO и закрытые NC).









Принцип работы
В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения. Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание. Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Схема подключения
Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем. Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:
На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН. Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2. Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт.
Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ. На реле РТИ эти контакты размещены на передней панели:
Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Назначение и принцип работы
При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле. Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.
Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.
Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка. Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.
Процесс подключения
Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.
Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.









Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.
Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.
Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.
Принципиальные схемы включения электротеплового реле.
В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.
При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.
При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.
При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.
Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.
На фотографиях ниже показана часть монтажной схемы цепей управления:
Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.









При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.
И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.
От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.
При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».
Вот и подошел к логическому завершению рассказ о магнитном пускателе.Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.
И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.
Рассмотрим зависимость работы от температуры окружающего воздуха
Здесь можно наблюдать прямую зависимость нагрева биметаллической пластинки от наружной температуры. Если температура увеличивается — ток срабатывания реле уменьшается. При значительном увеличении температуры необходимо провести дополнительную регулировку устройства. Можно подобрать соответствующую биметаллическую пластинку. Чтобы уменьшить влияние температуры на ток срабатывания, при регулировке нужно устанавливать наибольшую температуру срабатывания. Нормальная работа реле и защищаемого устройства наилучшим образом обеспечивается при расположении их в одном помещении.
В настоящее время производится большое количество разных видов реле. Для того, чтобы сделать правильный выбор, а затем установить и отрегулировать устройство лучше всего воспользоваться услугами квалифицированного электротехника.
ИССЛЕДОВАНИЕ, РЕГУЛИРОВКА И НАСТРОЙКА ТЕПЛОВЫХ РЕЛЕ И РАСЦЕПИТЕЛЕЙ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ
КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯТЕПЛОВЫЕ РЕЛЕНазначение, устройство и принцип действия тепловых релеПППномномМетодика регулировки тепловых реле
| Тип реле | Номинальный ток реле Iном, А | Номинальный ток сменных тепловых элементов Iн.т., А (выгравирован на тепловом элементе) | Пределы регулирования номинального тока уставки | Наибольший ток длительного режима при установке реле на открытой панели при температуре окружающего воздуха 40С, не более, А |
| ТРН – 8АТРН – 10АТРН – 8ТРН – 10ТРН – 20ТРН – 25ТРН — 32 | 3,21025 | 0,32; 0,4; 0,5; 0,63; 0,8; 1,0; 1,25; 1,6; 2,0; 2,5; 3,20,5; 0,63; 0,8; 1,0; 1,25; 1,6; 2,0; 2,5; 3,2; 4,5; 6,3; 8,0; 10,05,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,012,5; 16,0; 20,0; 25,0; 32,0; 40,0 | (0,8…1,25) ±0,08Iном(0,75…1,3) ±0,08Iном(0,75…1,3) ±0,08Iном(0,75…1,3) ±0,08Iном | 1,25 Iном1,25 Iном1,05 Iном1,25 Iном1,05 Iном1,25 Iном1,05 Iном |
| Секция | Время срабатывания при Кп = I/Iном | ||
| 4 | 3 | 2 | 1,5 |
| 1 | |||
| 2 |
| N бригады | Iн.дв., А | Т, С | N (I) |
| 1 | 3,3 | ||
| 2 | 17 | -10 | |
| 3 | 32 | +5 |
СОДЕРЖАНИЕ ОТЧЕТАпКОНТРОЛЬНЫЕ ВОПРОСЫАВТОМАТИЧЕСКИЕ ВОЗДУШНЫЕ ВЫКЛЮЧАТЕЛИКРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯДистанционное Ручное дистанционное Автоматическое Электромагнитный Тепловой Расцепитель максимального напряжения установочные, универсальные, номномномпкзпномкзномномМетодика испытания и настройки расцепителейавтоматических воздушных выключателейИспытание электромагнитных элементов расцепителейИспытание электромагнитных элементов комбинированных расцепителейИспытание расцепителя минимального напряженияномномМетодика расчета и установка тока уставки автоматического выключателя для защиты электродвигателяуст.номномуст.номпномномпномнрокр.окр.окр.н дв.н н дв.ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫнномпном









| Типавтоматического выключателя | Полюс | Время срабатывания теплового расцепителя при к=I/Iном | Ток отсечки максимального расцепителя Iотс.р.=nIном | Напряжение срабатывания расцепителя |
| 3 | 2 | 1,5 | ||
| 1 | ||||
| 2 | ||||
| 3 |
| № бригады | Вариант | Тип двигателя | Iн.дв.,А | Uс.,В | Iпуск/Iном |
| 1 | 12 | 4А71А2УЗ4А112М4УЗ | 1,711,6 | 220380 | 5,57,0 |
| 2 | 12 | 4А6ЗА6УЗ4А200L8УЗ | 0,7845,0 | 127220 | 3,05,5 |
| 3 | 12 | 4А100L2УЗ4А56В4УЗ | 10,50,66 | 220127 | 7,53,5 |
| 4 | 12 | 4А80А2УЗ4А100L4УЗ | 3,38,6 | 380220 | 6,56,0 |
СОДЕРЖАНИЕ ОТЧЕТАКОНТРОЛЬНЫЕ ВОПРОСЫ
| Тип автоматического выключателя | Номинальный ток выключателя, А | Номинальный ток расцепителя, А | Ток отсечки, А | Ток перегрузки, А |
| А3160А3110А3120А3130ВА21-29ВА51-25ВА57-35ВА52-39 | 5010010020016…630 | 15; 20; 25; 30; 40; 5015; 20; 25; 30; 40; 50; 60; 80; 10015; 20; 25; 30; 40; 50; 60; 80; 100120; 150; 2000,6…636,3…2516…250250…630 | -10IНОМ430; 600; 8007IНОМ(3; 10; 12)IНОМ | (1,1…1,35)IНОМ(1,1…1,45)IНОМ(1,1…1,45)IНОМ(1,1…1,45)IНОМ(1,1…1,45)IНОМ |
Принцип работы теплового реле
На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.
Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.
Методика выбора
Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.
Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.
Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.
Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.
Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.
Тепловое реле РТИ: свойства и принцип действия
Основное назначение электротепловых реле — это защита электродвигателей от опасного перегрева при возникновении длительных токовых перегрузок. Контактор и тепловое реле в сборке образуют магнитный пускатель, который применяется для того, чтобы при срабатывании защиты реле происходило экстренное отключение контактора и обесточивание электродвигателя.
Принцип действия теплового реле РТИ основан на деформации биметаллической пластины при нагреве. Биметаллическая пластина — это пластина из двух сваренных по длине металлов, с различным коэффициентом теплового расширения. При нагревании такой пластины, расположенной в главной цепи реле, каждый металл расширяется согласно своим характеристикам, и пластина изгибается в сторону металла с меньшим коэффициентом теплового расширения. Соответственно чем больший ток будет протекать через главную цепь реле, тем быстрее будут греться пластины, и тем быстрее будет срабатывать защита. В реле РТИ применяется не прямой, а косвенный нагрев биметаллических пластин, то есть, ток не проходит напрямую через саму биметаллическую пластину, а проходит через специализированный нагревательный элемент, расположенный рядом с пластиной и контактирующий с ней, который выделяя тепло — греет биметаллическую пластину. Таким образом, возможность регулирования места и площади контакта нагревателя с биметаллической пластиной значительно повышает точность настройки защиты реле и соответствие заявленным времятоковым кривым (см. Рис.1).
Помимо защиты электродвигателя от перегрузки по току, защита тепловых реле РТИ чувствительна и к пропаданию фазы. То есть, при обрыве одной из фаз электродвигателя, за счет повышения тока потребления по двум оставшимся фазам и нагревания биметаллических пластин, произойдет срабатывание защиты РТИ.








Напомним, что тепловые реле РТИ не только не предназначены для защиты электродвигателя от короткого замыкания, но и сами нуждаются в такой защите. Дело в том, что при протекании тока короткого замыкания нагреватель реле перегорит быстрее, чем нагреются биметаллические пластины, и реле отключит двигатель.
Поэтому при установке тепловых реле в цепи защиты обязательно должен располагаться аппарат защиты от короткого замыкания (автоматический выключатель, плавкая вставка и т.п.).
Резюме
Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.




























