для чего применяют осцилляторы
Что такое осциллятор
Когда требуется заварить трещину или собрать конструкцию из высоколегированной стали, используют покрытые электроды с соответствующим составом и источник постоянного тока. Хорошо поддается сварке нержавеющая сталь и вольфрамовым электродом. Для соединения деталей из алюминия используют те же средства, только на переменном токе. Но в каждом случае возникает сложность — розжиг дуги. Такие металлы покрыты оксидной пленкой, мешающей установлению контакта между поверхностью и электродом. Для решения этой проблемы в схему оборудования добавляют осциллятор. Он способствует быстрому возбуждению сварочной дуги и поддерживает ее горение. Что такое осциллятор в деталях? Какие встречаются разновидности таких аппаратов, и по какому принципу они работают?
Что это такое
Осциллятор для сварки — это генератор, используемый для выработки тока высокой частоты, который связывает конец электрода и свариваемую поверхность без физического контакта. Устанавливается такое оборудование между сварочным аппаратом и держателем. Существуют отдельные устройства и входящие в корпус самого сварочника. Подобные аппараты могут работать по двум схемам:
Применение осцилляторов
Осцилляторы для сварки, благодаря своим свойствам, широко используются в оборудовании для работы с цветными металлами. Когда требуется наложить шов на нержавейку, алюминий, или медь, то применение осциллятора позволяет быстро возбудить дугу и начать сварку, вместо утомительного постукивания и чирканья об изделие электродом.
Использовать это устройство удобно и для точного начала ведения шва. Сварщик устанавливает конец вольфрамовой иглы на ближний край соединения, опускает маску, и нажатием кнопки возбуждает дугу. Это значительно снижает последующую обработку изделия от следов касания электрода. Внедряют их и на аппараты по плазменной резке, позволяющие быстро приступить к процессу разделывания материала.
Осциллятор сварочный применяется еще и для работы с тонкими листами металлов. Как правило, ток инвертора в таких случаях выставляется на низких значениях, и малейшее удаление конца электрода из сварочной ванны ведет к прерыванию дуги. Внедрение в схему осциллятора позволяет стабилизировать электросварку в работе на малых токах.
Устройство осциллятора
Подобные аппараты интегрируются в цепь оборудования всегда между трансформатором или выпрямителем и сварочным держателем для электродов. Вследствие чего обеспечивается установление контакта и стабилизация работы. Большинство осцилляторов имеют похожее строение и включают в себя следующие узлы:
Принцип работы
Главная задача устройства для генерирования импульса — модернизировать входящее напряжение, повысив его частоту и показатель V, и уменьшив его длительность до интервала менее секунды. Работает эта схема следующим образом:
Разновидности
Осциллятор может применять по-разному, в зависимости от его типа и вида выполняемых сварочных работ. Общими параметрами всех устройств является преобразование тока до 3000-5000 В, и повышение частоты колебания до 150-500 кГц. Различие же заключается во временном показателе высокочастотного тока.
Модели с непрерывным действием применяются для поддержания и стабилизации сварочной дуги. Их подключение должно быть последовательным, чтобы защитить сварщика от высокого напряжения, которое постоянно присутствует в цепи. Такие осцилляторы накладывают высокочастотный ток поверх сварочного, что помогает производить беспрепятственный розжиг и вести сварку на малых токах. Чаще всего эти модели устанавливают на инверторы или трансформаторы для работы с покрытыми электродами.
Использование осцилляторов значительно оптимизирует сварочный процесс и экономит дорогостоящие расходные материалы. Выбрав аппарат в зависимости от типа намеченных работ, можно облегчить ее выполнение и повысить качество.
Осцилляторы играют важную роль в физике и технике, ведь практически любая линейная физическая система может быть описана как осциллятор. Примерами простейших осцилляторов могут служить колебательный контур и маятник. Электрические осцилляторы преобразуют постоянный ток в переменный, и создают колебания требуемой частоты с помощью схемы управления.
На примере колебательного контура, состоящего из катушки индуктивностью L и конденсатора емкостью C, можно описать базовый процесс функционирования электрического осциллятора. Заряженный конденсатор, сразу после соединения его выводов с катушкой, начинает разряжаться через нее, при этом энергия электрического поля конденсатора постепенно преобразуется в энергию электромагнитного поля катушки.
Когда конденсатор полностью разрядится, вся его энергия перейдет в энергию катушки, после чего заряд продолжить двигаться через катушку, и перезарядит конденсатор в противоположной полярности, чем была вначале.
Так или иначе, колебательный контур в данном примере является простейшим осциллятором, так как в нем периодически изменяются следующие показатели: заряд в конденсаторе, разность потенциалов между обкладками конденсатора, напряженность электрического поля в диэлектрике конденсатора, ток через катушку, индукция магнитного поля катушки. При этом имеют место свободные затухающие колебания.
Чтобы колебания осциллятора стали незатухающими, необходимо восполнять рассеиваемую электроэнергию. При этом для поддержания постоянной амплитуды колебаний в контуре нужно контролировать поступающую электроэнергию, чтобы амплитуда не снижалась ниже и не росла выше заданной величины. Для достижения этой цели в схему вводят цепь обратной связи.
Таким образом, осциллятор превращается в схему усилителя с положительной обратной связью, где выходной сигнал частично подается на активный элемент схемы управления, в результате работы которой в контуре поддерживаются незатухающие синусоидальные колебания постоянной амплитуды и частоты. То есть синусоидальные осцилляторы работают за счет притока энергии от активных элементов к пассивным, с поддержанием процесса цепью обратной связи. Колебания имеют слабо изменяющуюся форму.
с положительной или отрицательной обратной связью;
с синусоидальной, треугольной, пилообразной, прямоугольной формой сигнала; низкой частоты, радиочастоты, высокой частоты и т. д.;
RC, LC – осцилляторы, кристаллические осцилляторы (кварц);
осцилляторы постоянной, переменной или перестраиваемой частоты.
Осциллятор (генератор) Ройера
Транзисторы работают в ключевом режиме, а насыщающийся магнитопровод позволяет осуществить положительную обратную связь, и, если нужно, гальванически развязать вторичную обмотку от первичной цепи.
В начальный момент времени, при включении питания, небольшие коллекторные токи начинают течь через транзисторы от источника Uп. Один из транзисторов откроется раньше (пусть VT1), и магнитный поток, пересекающий обмотки, станет увеличиваться, а наводимая в обмотках ЭДС будет при этом расти. ЭДС в базовых обмотках 1 и 4 будут таковы, что транзистор начавший открываться первым (VT1) откроется, а транзистор с меньшим начальным током (VT2) – закроется.
Коллекторный ток транзистора VT1 и магнитный поток в магнитопроводе продолжат нарастать до насыщения магнитопровода, и в момент наступления насыщения ЭДС в обмотках обратится в ноль. Ток коллектора VT1 начнет снижаться, магнитный поток — уменьшаться.
Полярность индуцируемых в обмотках ЭДС изменится на противоположную, и поскольку базовые обмотки симметричны, то транзистор VT1 начинает закрываться а VT2 – открываться.
Ток коллектора транзистора VT2 станет нарастать до того момента, пока не прекратится нарастание магнитного потока (теперь в противоположном направлении), и когда ЭДС в обмотках вновь обратится в ноль, ток коллектора VT2 начнет уменьшаться, магнитный поток — убывать, ЭДС сменит полярность. Транзистор VT2 закроется, откроется VT1 и процесс продолжится циклически повторяясь.
Частота осцилляции генератора Ройера связана с параметрами источника питания и с характеристиками магнитопровода в соответствии со следующей формулой:
Так как в процессе насыщения магнитопровода ЭДС в обмотках трансформатора будет постоянной, то при наличии вторичной обмотки, при подключенной к ней нагрузке, ЭДС приобретет форму прямоугольных импульсов. Резисторы в базовых цепях транзисторов стабилизируют работу преобразователя, а конденсаторы способствуют улучшению формы выходного напряжения.
Осцилляторы Ройера способны работать на частотах от единиц до сотен килогерц, в зависимости от магнитных свойств сердечника в трансформаторе T.
Кроме трансформатора в схеме имеется разрядник, колебательный контур, обмотки связи и блокировочный конденсатор. Благодаря колебательному контуру, как главной составной части, работает высокочастотный трансформатор.
Высокочастотные колебания проходят через высокочастотный трансформатор и напряжение высокой частоты прикладывается к дуговому промежутку. Блокировочный конденсатор предотвращает шунтирование источника питания дуги. В сварочную цепь также включен дроссель для надежной изоляции обмотки осциллятора от ВЧ токов.
При мощности до 300 Вт, сварочный осциллятор дает импульсы длительностью в несколько десятков микросекунд, чего вполне достаточно для легкого поджога дуги. Ток высокой частоты и высокого напряжения просто накладывается на рабочую сварочную цепь.
Осцилляторы для сварки бывают двух типов:
Осцилляторы-возбудители непрерывного действия работают непрерывно в процессе сварки, возбуждая дугу путем наложения на ее ток вспомогательного тока высокой частоты (от 150 до 250 кГц) и высокого напряжения (от 3000 до 6000 В).
При соблюдении техники безопасности данный ток не причинит вреда сварщику. Дуга под действием высокочастотного тока горит ровно даже при малой величине сварочного тока.
Наиболее эффективны сварочные осцилляторы последовательного включения, поскольку с ними установка высоковольтной защиты для источника не потребуется. Разрядник в процессе работы издает негромкое потрескивание через зазор до 2 мм, который регулируется перед началом работы при помощи специального винта (в это время вилка из розетки выдернута!).
Для сварки переменным током используют осцилляторы импульсного питания, способствующие поджогу дуги во время изменения полярности переменного тока.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Применение осциллятора для сварки
При необходимости заварить швы с дефектами или сварить металлоконструкции из стали сварщики используют электроды с покрытием и инвертор, выдающий постоянный ток. Также в сварке нержавеющей стали часто применяются вольфрамовые электроды. Вне зависимости от выбранного электрода или модели сварочника часто возникает проблема правильного и быстрого розжига дуги. Чтобы решить эту проблему достаточно подключить в цепочку оборудования сварочный осциллятор.
В этой статье мы расскажем, что такое осциллятор в сочетании с остальным сварочным оборудованием, каков принцип действия и как применять его в своей работе.
Общая информация
Сварочный осциллятор для сварки алюминия или любого другого металла — это прибор, генерирующий ток высокой частоты. Благодаря этому току электрод лучше взаимодействует с поверхностью металла. Чтобы использовать осциллятор нужен сварочный аппарат и держатель электродов. В данном случае осциллятор устанавливается между ними. Наиболее известные модели осцилляторов: ОССД 300 и ОССД 400, ОП 240, ОП 400.
В целом, такие приборы работают по следующему принципу: осциллятор генерирует кратковременный электрический импульс, зажигая дугу. Импульс исчезает сразу после розжига дуги. При этом нет необходимости в физическом контакте электрода и поверхности металла. Со стороны этот импульс выглядит, как маленький разряд молнии между концом электрода и свариваемой поверхностью. Кстати, осциллятор можно сделать своими руками.
Устройство
Большинство осцилляторов, представленных в магазинах, имеют схожее строение и состоят из выпрямителя, конденсаторов (накапливающих заряд), источника питания, отдельного узла (отвечающего за генерирование электрического импульса) с колебательным контуром и разрядником, блока управления, датчика напряжения и повышающего трансформатора. В моделях для работы с аргоном также есть газовый клапан.
Принцип работы
Прибор не просто генерирует электрический импульс, он изменяет входящее напряжение, повышая его частоту и вольтаж. Весь этот процесс занимает секунду. Давайте подробнее остановимся на принципе работы осциллятора.
Сначала запускается электрическая цепь путем нажатия на кнопку горелки. Выпрямитель выравнивает поступающий ток, переводя его в однонаправленное состояние. Затем ток накапливается в конденсаторах. Впоследствии ток высвобождается и попадает в колебательный контур. Именно здесь повышается вольтаж. Если прибор предназначен для сварки аргоном, то одновременно открывается газовый клапан.
Образуется тот самый импульс, с виду напоминающий молнию. Он связывает конец электрода и поверхность свариваемого металла. К металлу предварительно подсоединяют кабель массы. Вот и все! Сварочный аппарат, включенный в эту цепь, позволяет сварить детали. А осциллятор сварочный (например, модель ОССД 300 или ОП 240, ОП 400) обеспечивает стабильное горение дуги.
Особенности
Существует несколько типов осцилляторов и все они применяются для конкретных задач. Но мы начнем с характеристик, которые объединяют все типы осцилляторов. Итак, все приборы способны преобразовывать ток до 5000В и повышать частоту до 500 кГц.
Теперь о различиях. Существует осциллятор для сварки алюминия или любого другого металла, который работает непрерывно. Благодаря непрерывному действию обеспечивается стабильное горение дуги. К этому типу относится большинство современных приборов, продающихся в магазине. Такой осциллятор следует подключать последовательно, чтобы избежать повышенного напряжения, из-за которого вы можете пострадать. Не забывайте соблюдать технику безопасности на рабочем месте. С помощью таких приборов можно вести сварку с использованием малого значения тока и легко разжигать дугу. Зачастую такой осциллятор устанавливают на сварочный инвертор или трансформатор, для работы с электродами с покрытием.
Также есть осцилляторы для бесконтактного возбуждения дуги при сварке с использованием аргоновых аппаратов. Они отличаются тем, что имеют газовый клапан. Обычно сварку аргоном производят с помощью вольфрамовых электродов, которые могут часто тупиться при поджиге методом постукивания. Из-за этого шов получается неаккуратным и неровным, а дуга горит нестабильно. Вы, конечно, можете постоянно затачивать электрод, но мы все же рекомендуем использовать осциллятор.
Применение
Начинающие сварщики часто пытаются зажечь сварочную дугу методом постукивания или чирканья, даже если это требует массу времени и сил. Упростите себе задачу, ведь осциллятор сварочный специально разработан, чтобы без труда возбудить дугу и сварить цветные металлы. Вы без труда сделаете качественный и прочный шов на деталях из нержавеющей стали или алюминия. Также осцилляторы устанавливают на сварочный аппарат, предназначенный для плазменной резки.
Также прибор можно применять при сварке тонких металлов. Достаточно установить минимальное значение тока в инверторе и включить в цепь осциллятор. Дуга не будет прерываться даже на крайне маленьких значениях тока, что особенно удобно при сварке непрерывных длинных швов.
Вместо заключения
Сварка с осциллятором (например, с моделью ОССД 300 или ОП 240) упрощает и ускоряет сварочные работы, экономя расходники. Не нужно беспокоиться о стабильности горения дуги и о том, как быстро зажечь ее. Особые умельцы могут сделать осциллятор своими руками. Испробуйте осциллятор сварочный и поделитесь своим опытом в комментариях к нашей статье. Желаем удачи!
Осцилляторы. Виды и устройство. Работа и применение. Особенности
Осциллятором называют систему, в которой периодически совершается повторение какого-либо показателя. Осцилляторы в технике играют важную роль, так как любая физическая система представляется в виде осциллятора. Элементарными осцилляторами можно назвать маятник и контур колебаний. Электрические осцилляторы выполняют преобразование постоянного тока в переменный, образуют колебания определенной частоты управляющей схемой.
Какие бывают осцилляторы
Существует много различных видов осцилляторов:
Осцилляторы Ройера
Чтобы превратить постоянное напряжение в прямоугольные импульсы, либо для создания электромагнитных колебаний для других нужд, можно использовать осциллятор Ройера. Его еще называют генератором. Такое устройство состоит из двух биполярных транзисторов, двух резисторов, двух емкостей, а также трансформатор.
Транзисторы функционируют в режиме ключей, трансформатор дает возможность создать обратную связь, разъединить гальванически первичную и вторичную обмотки.
В начальный период времени, при подаче напряжения незначительные токи коллектора начинают протекать от источника по транзисторам. Транзистор VТ1 откроется раньше, магнитный поток, который пересекает обмотки, будет повышаться, а ЭДС обмоток будет также расти. В основных обмотках 1 и 4 ЭДС будут такими, что транзистор VТ1 откроется, а другой транзистор VТ2 закроется.
Ток коллектора VТ1 и магнитный поток в трансформаторе будут повышаться до момента его насыщения. В этот момент ЭДС обмоток будет равна нулю. При этом коллекторный ток транзистора VТ1 станет уменьшаться.
Полярность ЭДС обмоток изменится на обратную, и транзистор VТ1 станет закрываться, а транзистор VТ2 откроется, так как основные обмотки симметричны.
Коллекторный ток VТ2 будет повышаться до момента, когда прекратится повышение магнитного потока, и когда ЭДС обмоток снова станет нулевой, коллекторный ток VТ2 станет снижаться, магнитный поток – уменьшаться, ЭДС изменит свою полярность. VТ2 закроется, при этом откроется транзистор VТ1, и весь процесс повторится.
Частота осциллятора Ройера взаимосвязана с параметрами блока питания и со свойствами магнитопровода по следующей зависимости:
U п — напряжение; ω — число витков; S — сечение сердечника; B н — индукции.
При насыщении сердечника ЭДС будет неизменной, поэтому при подключении нагрузки к вторичной обмотке, форма импульсов ЭДС станет прямоугольной. Сопротивления в основных цепях транзисторов выравнивают функционирование преобразователя, а емкости помогают оптимизировать форму напряжения на выходе.
Генераторы Ройера могут функционировать на частотах, достигающих нескольких сотен кГц. Это зависит от магнитных характеристик магнитопровода трансформатора.
Сварочные осцилляторы
Чтобы облегчить поджигание дуги во время сварки и для ее устойчивости используют так называемые сварочные устройства. Это генераторы повышенной частоты, служащие для эксплуатации с обычными источниками напряжения. Сварочный осциллятор выполнен в виде искрового генератора колебаний на основе повышающего трансформатора низкой частоты с разностью потенциалов на вторичной обмотке до 3000 вольт.
В схеме также имеется блокировочный конденсатор, обмотка связи, контур колебаний, разрядник. С помощью контура колебаний, являющимся основной частью осциллятора, действует трансформатор высокой частоты.
Колебания ВЧ проходят по трансформатору, и ВЧ напряжение поступает на дуговой зазор. Блокировочная емкость предохраняет шунтирование источника напряжения дуги. В цепь сварки также входит дроссель для качественной изоляции обмотки.
Сварочный осциллятор до 0,3 кВт выдает импульсы в несколько мс. Этого хватает для быстрого поджигания электрической дуги. Ток ВЧ и высокого напряжения накладывается на действующую сварочную цепь.
Виды сварочных осцилляторов
Устройства постоянного действия функционируют без перерыва при сварке, образуя дугу наложением дополнительного тока ВЧ и напряжения до 6 кВ. Возбуждение электрической дуги осуществляется с помощью наложения высокой частоты на токоведущие части. Дуга может возникать без касания электрода со свариваемыми деталями. Такой ток не причиняет вреда работнику, если соблюдены все требования охраны труда. Электрическая дуга ВЧ тока горит ровным пламенем даже при незначительном токе.
Большей эффективностью обладают сварочные аппараты при последовательной схеме включения, так как при этом нет необходимости в высоковольтной защите. В процессе эксплуатации от разрядника слышны легкие потрескивания по промежутку до двух миллиметров. Этот зазор настраивают перед началом сварки специальным регулировочным винтом, при отключенном питании.
При работе на сварочном аппарате от переменного тока применяют импульсные устройства, которые способны поджечь электрическую дугу при изменении полярности тока. Это такие аппараты, которые предназначены для подачи синхронных импульсов в тот момент, когда меняется полярность. Вследствие этого намного упрощается повторное образование электрической дуги.
Это дает возможность уменьшить напряжение холостой работы трансформатора до 40 вольт. Импульсные устройства используют только для сварки с применением защитных газов неплавящимися электродами. Импульсные сварочные устройства имеют повышенную устойчивость в работе, по сравнению с обычными осцилляторами. Они не образуют радиопомех, однако, из-за нехватки напряжения не могут обеспечить дугу без осциллятора на первоначального розжига и импульсного возбудителя.
В устройство такого осциллятора входят специальные емкости, получающие заряд от особого блока питания. Они поддерживают стабильное горение дуги.
Такое устройство используется для сварки электродами для обработки аргона, цветных металлов, а также и обычными электродами.
Принцип действия
Основной процесс действия электрического осциллятора можно показать на примере контура колебаний, который состоит из конденсатора С и индуктивности L. После подключения выводов заряженного конденсатора с катушкой, он начинает разряжаться. Вследствие чего энергия конденсатора медленно модифицируется в электромагнитное поле.
После полного разряда емкости, энергия переходит в катушку. После этого заряд продолжает перемещаться по катушке, и снова заряжает конденсатор в обратной полярности, какая была сначала.
Затем конденсатор снова начинает разряжаться на катушку. И так все периоды колебаний этот процесс будет иметь повторения, до тех пор, пока не затухнут колебания вследствие рассеивания энергии в диэлектрике между пластинами емкости, на сопротивлении обмотки катушки.
В этом примере контур колебаний — наиболее простой осциллятор. В нем происходят изменения показателей: индукции, тока, напряженности, напряжения между пластинами емкости, заряда емкости. При этом существуют затухающие свободные колебания.
Для того, чтобы сделать колебания незатухающими, требуется восполнение рассеивания электрической энергии. При восполнении энергии необходимо следить за тем, чтобы амплитуда колебаний оставалась постоянной, и не выходила за пределы заданной величины. Чтобы достигнуть выполнения этой задачи в схему включают цепь обратной связи.
В результате осциллятор становится схемой усилителя с обратной связью. В этой схеме часть выходного сигнала поступает на активный элемент управляющей схемы. Итогом ее действия в колебательном контуре возникают синусоидальные колебания, которые имеют неизменную частоту и амплитуду. Другими словами синусоидальные осцилляторы функционируют благодаря притоку энергии, поступающей от активных элементов к пассивным. При этом процесс поддерживается с помощью цепи обратной связи. Форма колебаний изменяется незначительно.
Требования к использованию
Для того, чтобы применять осцилляторы, необходима их регистрация в специальных органах электросвязи. Также необходимо соблюдать и другие условия эксплуатации:
В настоящее время в торговой сети осцилляторы широко представлены в специализированных магазинах. Также его можно изготовить самостоятельно. Чтобы изготовить осциллятор своими руками, необходимы специальные знания в электротехнике по вопросам подключения электрических цепей, правильный выбор составных частей и деталей. Основным элементом является трансформатор высокого напряжения.
Самодельные осцилляторы можно изготовить по самой элементарной схеме. В состав устройства будет входить трансформатор, регулирующий напряжение, и разрядник, который выдерживает прохождение мощной электрической дуги.
Управление устройства осуществляется кнопкой, которая одновременно подключает разрядник и подачу газа в область производства сварки. Высокочастотные импульсы, которые должны обеспечить надлежащую эффективность сварки, создаются трансформатором, имеющим высокое напряжение и разрядником.
На выходе такой сварочный аппарат имеет два контакта: положительный и отрицательный. По положительному электроду поступает ток от трансформатора, подключается к сварочной горелке, а второй провод подключается на свариваемые детали.
Меры безопасности
Для работы с осциллятором требуется квалификация и навык работы со сварочными аппаратами. При использовании подобных устройств требуется соблюдение безопасных приемов работы.
Во время эксплуатации необходимо непрерывно осуществлять контроль за правильностью подключений к сварочной цепи, контролировать надежность контактов на их качество соединения и исправность. Также при работе необходимо применять защитный кожух, который одевается и снимается с устройства только при отключенном питании. Также необходимо постоянно следить за состоянием разрядника, очищать его поверхность от нагара с помощью шлифшкурки.














