для чего служит шина управления
Шина управления
Шина управления — компьютерная шина, по которой передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен информацией между устройствами и т. д.
Эта шина не имеет такой же четкой структуры, как шина данных или шина адреса. В шину управления условно объединяют набор линий, передающих различные управляющие сигналы от процессора на все периферийные устройства и обратно. В шине управления присутствуют линии, передающие следующие сигналы [1] :
Кроме того, к сигналам шины управления относятся: READY — сигнал готовности, RESET — сигнал сброса.
Примечания
![]() | Это заготовка статьи о компьютерах. Вы можете помочь проекту, исправив и дополнив её. Это примечание по возможности следует заменить более точным. |
Компьютерные шины | |
|---|---|
| Основные понятия | Шина адреса • Шина данных • Шина управления • Пропускные способности |
| Процессоры | BSB • FSB • DMI • HyperTransport • QPI |
| Внутренние | AGP • ASUS Media Bus • EISA • InfiniBand • ISA • LPC • MBus • MCA • NuBus • PCI • PCIe • PCI-X • Q-Bus • SBus • SMBus • VLB • VMEbus • Zorro III |
| Ноутбуки | ExpressCard • MXM • PC Card |
| Накопители | ST-506 • ESDI • ATA • eSATA • Fibre Channel • HIPPI • iSCSI • SAS • SATA • SCSI |
| Периферия | 1-Wire • ADB • I²C • IEEE 1284 (LPT) • IEEE 1394 (FireWire) • Multibus • PS/2 • RS-232 • RS-485 • SPI • USB • Игровой порт |
| Универсальные | Futurebus • InfiniBand • QuickRing • SCI • RapidIO • IEEE-488 • Thunderbolt (Light Peak) |
Полезное
Смотреть что такое «Шина управления» в других словарях:
шина управления — Шина интерфейса, предназначенная для передачи сигналов управления. [ГОСТ Р 50304 92 ] Тематики системы для сопряж. радиоэлектр. средств интерфейсные Обобщающие термины средства реализации взаимодействия EN control bus … Справочник технического переводчика
шина управления — 73 шина управления: Шина интерфейса, предназначенная для передачи сигналов управления Источник: ГОСТ Р 50304 92: Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения … Словарь-справочник терминов нормативно-технической документации
Шина управления — 1. Шина интерфейса, предназначенная для передачи сигналов управления Употребляется в документе: ГОСТ Р 50304 92 Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения … Телекоммуникационный словарь
общая шина управления — Интерфейс сетевого управления Bay Networks в концентраторах System 5000 и Distributed 5000, который также поддерживает связь с модулями других типов. [http://www.lexikon.ru/dict/net/index.html] Тематики сети вычислительные EN common management… … Справочник технического переводчика
Шина данных — Шина данных шина, предназначенная для передачи информации. В компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения… … Википедия
Шина адреса — Шина адреса компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для… … Википедия
шина — 3.3 шина (tyre): Приспособление, надеваемое на обод колеса машины для уменьшения износа колес и смягчения толчков при движении. Примечание Шины могут быть пневматическими или сплошными. Сплошные шины подразделяют на резиновые и нерезиновые… … Словарь-справочник терминов нормативно-технической документации
Шина (компьютер) — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16). Ниже обычный 32 битный разъем шины PCI. У этого термина существуют и другие значения, см. Шина. Компьютерная шина (от … Википедия
шина ПЭВМ с расширенной технологией — Системная магистраль, разработанная фирмой IBM, используется в серии IBM PC XT на основе микропроцессора 8088 с 8 разрядной шиной данных. Магистраль содержит 20 разрядную шину 8 разрядную двунаправленную шину данных, 6 линий уровня прерывания,… … Справочник технического переводчика
Шина PCI Express — На фотографии 4 слота PCI Express: x4, x16, x1, опять x16, внизу стандартный 32 разрядный слот PCI, на материнской плате DFI LanParty nForce4 SLI DR PCI Express или PCIe или PCI E, (также известная как 3GIO for 3rd Generation I/O; не путать с PCI … Википедия
Шина управления
Эта шина не имеет такой же четкой структуры, как шина данных или шина адреса. В шину управления условно объединяют набор линий, передающих различные управляющие сигналы от процессора на все периферийные устройства и обратно. В шине управления присутствуют линии, передающие следующие сигналы:
* MREQ — сигнал инициализации устройств памяти (ОЗУ или ПЗУ);
IORQ — сигнал инициализации портов ввода-вывода.Кроме того, к сигналам шины управления относятся: READY — сигнал готовности, RESET — сигнал сброса.
Связанные понятия
Компьютерная ши́на (англ. computer bus) в архитектуре компьютера — подсистема, служащая для передачи данных между функциональными блоками компьютера. В устройстве шины можно различить механический, электрический (физический) и логический (управляющий) уровни.
Топология типа общая ши́на, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.
Упоминания в литературе
Связанные понятия (продолжение)
Порт (персонального) компьютера предназначен для обмена информацией между устройствами, подключенными к шине внутри компьютера, и внешним устройством. Так, шинный разъём AGP фактически является портом.
В телекоммуникации и информатике под последовательной передачей данных понимают процесс передачи данных по одному биту за один промежуток времени, последовательно один за одним по одному коммуникационному каналу или компьютерной шине, в отличие от параллельной передачи данных, при которой несколько бит пересылаются одновременно по линии связи из нескольких параллельных каналов. Последовательная передача всегда используется при связи на дальние расстояния и в большинстве компьютерных сетей, так как.
Шина управления
Шина данных,
Шина адресная,
ШИНЫ
Шины данных и шины адресов (на физическом уровне) – многопроводные линии с гнездами для подключения электронных схем.
Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шины данных и шину управления:
Шина адреса предназначена для передачи адреса того устройства (или той ячейки памяти), к которому обращается процессор.
По шине данных передаётся вся информация при записи и считывании.
По шине управления передается управляющий сигнал и сигналы синхронизации.
Процесс взаимодействия процессора и памяти сводится к двум операциям – записи и считывания информации. При записи процессор по специальным проводникам (шина адреса) передает биты, кодирующие адрес, по другим проводникам – управляющий сигнал «запись», и еще по другой группе проводников (шины данных) передает записываемую информацию.
При чтении по шине адреса передается соответствующий адрес оперативной памяти (ОП), а с шины данных считывается нужная информация.
использования ЦП. Сигнал ввода-вывода определяет направление передачи.
Шины могут соединять ЦП как с памятью, так и с УВВ.
Современные компьютеры имеют прямую связь межу памятью и УВВ, что позволяет осуществлять передачу данных к периферийным устройствам и обратно без участия ЦП.
Этот метод передачи данных называется прямым доступом к памяти (ПДП).
Преимуществом ПДП является то, что скорость передачи обеспечивается только временем доступа к памяти (обычно менее 1 мкс).
Для передачи данных через ЦП требуется несколько команд, и на это уходит в 10-20 раз больше времени.
Прямой доступ к памяти применяется с быстродействующими периферийными устройствами, такими как магнитные диски, быстродействующие линии связи или дисплеи.

это основной рабочий компонент компьютера, который:
— выполняет арифметические и логические вычисления;
— управляет вычислительным процессом;
— координирует работу всех устройств компьютера.
ЦП обрабатывает данные. Он выбирает команды из памяти, дешифрирует их и выполняет.
ЦП вырабатывает временные сигналы и сигналы управления, передает в память и из памяти и устройств ввода-вывода, выполняет арифметические и логические операции и идентифицирует внешние сигналы.
На рис.1.1.4. показан структура типичного ЦП.
В течение каждого цикла командыЦП выполняет много управляющих функций:
1. помещает адрес команды в адресную шину памяти;
2. получает команду из шины ввода данных и дешифрирует ее;
3. выбирает адреса и данные, содержащиеся в команде; адреса и данные могут находиться в памяти или в регистрах;
4. выполняет операцию, определенную в коде команды. Операцией может быть арифметическая или логическая функция, передача данных или функция управления;
5. следит за управляющими сигналами, такими как прерывание, и реагирует соответствующим образом;
6. генерирует сигналы состояния, управления и времени, которые необходимы для нормальной работы УВВ и памяти.
Таким образом, ЦП является “мозгом”, определяющим действия компьютера.
Шина управления
Шина адреса.
Предназначена для передачи адреса ко всем периферийным устройствам (как к устройствам памяти, так и к портам ввода/вывода). Количество разрядов адресной шины отличается большим разнообразием. Например, микропроцессор серии К580ИК80 имеет 16 разрядов адреса. Это можно считать минимальным количеством. Процессор Intel 8086, На котором собран родоначальник всех современных персональных компьютеров – IBM PC-XT, имеет 20 разрядов адреса. Современные процессоры имеют до 32 разрядов и больше. От количества разрядов шины адреса зависит, какое количество ячеек памяти может адресовать процессор. Процессор, имеющий шестнадцатиразрядную шину данных может обращаться к 2 16 (то есть к 65536) ячейкам памяти. Это число называется объемом памяти. То есть, по другому можно сказать, что такой процессор имеет объем адресуемой памяти в 65536 байт.
В вычислительной технике используется необычная размерность для измерения объема памяти. Число 1024 (а это 2 10 ) байт информации принято называть Килобайтом. Почему 1024, а не 1000? Ну во первых потому, что количество ячеек памяти, адресуемых любым микропроцессором всегда является величиной, равной какой либо степени числа два. Например, для адресации 1024 ячеек памяти нужна шина адреса, имеющая ровно 10 разрядов. При этом шина не будет избыточна. Если бы мы захотели иметь только 1000 ячеек памяти, то для того, что бы обеспечить возможность обратиться к любой из них, нам все равно потребовалось бы 10 разрядов адреса, так как при девяти разрядах можно обратиться только к 512 ячейкам. Поэтому никто и ни когда не делал запоминающего устройства с объемом не равным одной из степеней двойки. Логично, что и объем памяти удобнее измерять в величинах, из того же ряда.
Поэтому один килобайт равен 1024 байта. Один мегабайт равен 1024 килобайта. Один гигабайт равен 1024 мегабайту. Ну, дальше наша техника пока еще не пошла. Пока объемы памяти, реально используемой на современных компьютерах, не превышают нескольких гигабайт.
Для адресации портов ввода/вывода используется та же самая шина данных. Но в отличие от режима обмена данными с ОЗУ, при обмене с ПЗУ обычно используются только восемь (реже 16) младших разрядов той же самой шины адреса. Это связано с тем, что в реальной микропроцессорной системе портов ввода вывода бывает гораздо меньше, чем ячеек памяти.
Эта шина не имеет такой же четкой структуры, как шина данных или шина адреса. В шину управления условно объединяют набор линий, передающих различные управляющие сигналы от процессора на все периферийные устройства и обратно. Что же это за линии. В любой шине управления обязательно присутствует линии, передающие следующие сигналы:
RD – сигнал чтения
WR – сигнал записи
MREQ – сигнал, инициализации устройств памяти (ОЗУ или ПЗУ)
IORQ –сигнал инициализации портов ввода/вывода
Кроме того, к сигналам шины управления относятся:
READY – сигнал готовности
RESET– сигнал сброса
И еще несколько специальных сигналов, о которых мы поговорим позже.
В данной книге мы будем рассматривать простую микропроцессорную систему, имеющую восьмиразрядную шину данных и шестнадцатиразрядную шину адреса.
Рассмотрим подробнее, как работает микропроцессорная система, изображенная на рис. 28. В основном режиме работы, всей микропроцессорной системой управляет центральный процессор (CPU). При этом он может выполнять четыре основных операции: чтение из ячейки памяти, запись в ячейку памяти, чтение из порта и запись в порт.
Для того, что бы прочитать байт из ячейки памяти, процессор сначала устанавливает на шине адреса адрес нужной ячейки. Затем он устанавливает сигнал MREQ в активное состояние (Лог. 0). Этот сигнал поступает на устройства памяти и служит разрешением для их работы. При этом сигнал IORQ остается равным лог. 1. Поэтому порты ввода/вывода микропроцессорной системы не активны.
В следующий момент времени процессор переводит в активное состояние сигнал RD. Этот сигнал поступает как на устройства памяти, так и на порты ввода/вывода. Однако порты не реагируют на него, так как они отключены высоким уровнем сигнала IORQ. Устройство памяти напротив, получив управляющие сигналы RD и MREQ, выдает на шину данных байт информации из той ячейки памяти, адрес которой поступает на него по шине адреса.
Процесс записи данных в память происходит в следующей последовательности: Сначала центральный процессор выставляет на адресную шину адрес нужной ячейки памяти. Затем на шину данных он выставляет байт, предназначенный для записи в эту ячейку. После этого активизируется сигнал MREQ, разрешающий доступ к модулю памяти. И уже затем процессор устанавливает сигнал WR в активное (лог. 0) состояние. По этому сигналу происходит запись байта в ячейку памяти, адрес которой присутствует на шине адреса.
Некоторые виды памяти работают очень медленно. Они могут не успеть выдать информацию или произвести ее записать так быстро, как это способен сделать центральный процессор. Для согласования работы медленных устройств памяти с быстрыми процессорами существует сигнал READY (готовность). Сразу после того, как процессор установит сигнал чтения или записи в активное состояние, устройство памяти устанавливает сигнал READY в пассивное состояние (лог. 0). Такой уровень сигнала означает, что внешнее устройство не готово, то есть еще не выполнило команду. Сигнал READY поступает на процессор, и он переходит в режим ожидания. Когда устройство памяти выполнит команду, оно установит сигнал в активное состояние (лог. 1). Процессор, получив этот сигнал, возобновляет работу. Сигнал READY применяется и в случае работы с медленными портами ввода/вывода.
Операции чтения и записи с портами ввода/вывода происходят аналогично операциям чтения/записи с ОЗУ. Различие лишь в том, что вместо сигнала MREQ, в активное состояние переходит сигнал IORQ, разрешающий работу портов.
В заключение этой главы необходимо сказать о еще одном элементе, обязательно присутствующем в любой микропроцессорной системе. Это тактовый генератор. На рис. 24 тактовый генератор для простоты не показан. Каждая операции в микропроцессорной системе разделена на несколько тактов. Тактовый генератор вырабатывает прямоугольные импульсы, которые поступают на специальный вход микропроцессора, а иногда и на некоторые другие микросхемы микропроцессорной системы. Эти импульсы синхронизирует все процессы, происходящие в микропроцессорной системе и, в конечном счете, определяют быстродействие всей системы. У микроконтроллеров AT89C2051 и аналогичных ему, тактовый генератор входит в состав самой микросхемы контроллера.
Cистемная шина материнской платы, устройство и функции системной шины
Устройство и функции системной шины.
Часто люди, интересующиеся компьютерной тематикой, встречают в интернете такой термин, как системная шина. Но что же это такое? Эта статья подробно расскажет об одном из важнейших элементов компьютерной системы.
Системная шина – это устройство которое связывает между собой различные функциональные блоки компьютера, а ее задачей является передача данных между ними. Строго говоря это магистраль, состоящая из проводниковых элементов, по которым информация передается в виде электрического сигнала. Соответственно, чем больше тактовая частота, на которой шина работает, тем быстрее осуществляется обмен данными между элементами компьютерной системы.
Системная шина состоит из адресной шины, шины управления и данных. Каждая шина используется для передачи конкретной информации: по адресной передаются адреса (ячеек памяти и устройств), шина управления служит для передачи управляющих сигналов устройствам, а данные соответственно передаются посредством шины данных.
Типы системных шин.
В современных компьютерах используются шины нескольких видов. Материнские платы с процессорами Intel, оснащаются шинами QPB типа. Они способны передавать данные 4 раза за такт, а вот платы с процессорами AMD используют шины EV6, передающие данные 2 раза за один такт. Кстати, в последних моделях своих процессоров AMD вообще отказывается от стандартной системной шины, её роль будет выполнять технология HyperTransport.
Так как шина передает данные несколько раз за такт, её эффективная частота обычно в несколько раз выше реальной, то есть шина, имеющая фактическую частоту 200 мГц и передающая данные 4 раза за один такт, будет работать с эффективной частотой в 800 мГц. Это важно понимать для оценки производительности шины и расчета возможностей её разгона.
Следует учитывать и тот факт, что системная шина имеет ограничения по разгону, потому что превышение допустимого уровня тактовой частоты может привести к неисправности и нарушениям в работе. В то же время системная шина будет нормально функционировать при показателях частоты, которые ниже указанных на упаковке, не превышающих допустимый уровень.
Пропускная способность системных шин.
Одним из важных параметров, который характеризует системную шину является пропускная способность. Она определяет максимальное количество информации, которая передается по шине данных за одну секунду (Бит/с). Для определения величины пропускной способности следует частоту шины (частота считывания данных) умножить на количество Бит, переданных за один такт. Количество данных за такт соответствует показателю разрядности процессора. На современных процессорах показатель разрядности составляет 64 Бит.
Используя формулу и известные данные получаем:
Это и будет величиной пропускной способности магистрали, соединяющей чипсет (или северный мост) с процессором. Связанные с материнской платой ОЗУ, видеоадаптер и жесткий диск между собой функционируют посредством магистралей, среди которых системная шина является самой важной.
На деле системная шина фактически соединяет процессор и чипсет. А вот чипсет напрямую соединяется с различными устройствами компьютера (ОЗУ, видеоадаптер, USB) используя вспомогательные шины (шина памяти, графического контроллера, PCI, PCI Express и LPC), частоты которых отличаются от показателей системной шины.
Итак, данная статья отвечает на вопрос: что такое системная шина, каковы ее устройство и функции, какие виды системных шин существуют, а также как вычислить значение пропускной способности.


Компьютерные шины

