докажите что диагонали квадрата являются биссектрисами его углов

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

докажите что диагонали квадрата являются биссектрисами его угловОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.докажите что диагонали квадрата являются биссектрисами его углов

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

докажите что диагонали квадрата являются биссектрисами его углов

Ромб – это параллелограмм, у которого все стороны равны.

докажите что диагонали квадрата являются биссектрисами его углов

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

докажите что диагонали квадрата являются биссектрисами его углов

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

докажите что диагонали квадрата являются биссектрисами его углов

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

докажите что диагонали квадрата являются биссектрисами его углов

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

pазбирался: Даниил Романович | обсудить разбор | оценить

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

докажите что диагонали квадрата являются биссектрисами его углов

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

докажите что диагонали квадрата являются биссектрисами его углов

Для нахождения площади трапеции в справочном материале есть формула

pазбирался: Даниил Романович | обсудить разбор | оценить

докажите что диагонали квадрата являются биссектрисами его углов

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

докажите что диагонали квадрата являются биссектрисами его углов

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Для выполнения данного задания надо подставить все известные данные в формулу:

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

докажите что диагонали квадрата являются биссектрисами его углов

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

докажите что диагонали квадрата являются биссектрисами его углов

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

докажите что диагонали квадрата являются биссектрисами его углов

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

докажите что диагонали квадрата являются биссектрисами его углов

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Квадрат, его свойства и признаки.

Квадрат, его свойства и признаки.

Определение. Квадратом называется прямоугольник, у которого все стороны равны.

докажите что диагонали квадрата являются биссектрисами его углов

Для квадрата можно ввести несколько определений. Самое ёмкое мы уже привели. Но можно определить квадрат следующим образом:

Квадратом называется четырёхугольник, у которого все стороны равны, а углы прямые.

Квадратом называется параллелограмм, у которого все стороны и углы равны.

Квадратом называется ромб, у которого все углы прямые.

Поскольку квадрат является и параллелограммом, и прямоугольником, и ромбом, то он обладает теми же свойствами, что и все перечисленные четырёхугольники.

У квадрата диагонали пересекаются и точкой пересечения делятся пополам.

У квадрата диагонали взаимно перпендикулярны.

У квадрата диагонали являются биссектрисами его углов.

У квадрата диагонали равны.

У квадрата стороны являются высотами.

Каждая диагональ квадрата делит его на равные прямоугольные треугольники.

Теперь определим признаки квадрата.

ТЕОРЕМА ( I признак). Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

докажите что диагонали квадрата являются биссектрисами его углов

Так как – прямоугольник, то у него противолежащие стороны равны.

квадрат (по определению), ч.т.д.

ТЕОРЕМА ( II признак). Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом. докажите что диагонали квадрата являются биссектрисами его углов

по свойству диагоналей прямоугольника, значит, – медиана (по опред-нию).

ТЕОРЕМА ( III признак). Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

докажите что диагонали квадрата являются биссектрисами его углов

ТЕОРЕМА ( IV признак). Если в ромбе диагонали равны, то этот ромб является квадратом. докажите что диагонали квадрата являются биссектрисами его углов

ТЕОРЕМА ( V признак). Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом. докажите что диагонали квадрата являются биссектрисами его углов

ТЕОРЕМА ( VI признак). Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом. докажите что диагонали квадрата являются биссектрисами его углов

2. Так как , то параллелограмм является квадратом (по V признаку квадрата), ч.т.д.

ТЕОРЕМА ( VII признак). Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом. докажите что диагонали квадрата являются биссектрисами его углов

1. Так как , то четырёхугольник является ромбом (по V признаку ромба).

Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.

Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

Если в ромбе диагонали равны, то этот ромб является квадратом.

Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.

Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.

Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.

В четырёхугольнике диагонали взаимно перпендикулярны. Докажите, что отрезки, соединяющие середины противоположных сторон, равны. докажите что диагонали квадрата являются биссектрисами его углов

докажите что диагонали квадрата являются биссектрисами его углов

В равнобедренный прямоугольный треугольник, каждый катет которого равен см, вписан квадрат, имеющий с ним один общий угол. Найдите периметр квадрата.

В равнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Определите сторону квадрата, если известно, что гипотенуза равна 30 дм.

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них втрое больше другой и что диагональ квадрата равна дм.

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна см.

докажите что диагонали квадрата являются биссектрисами его углов

докажите что диагонали квадрата являются биссектрисами его углов

Через вершины квадрата проведены прямые, параллельные его диагоналям. Определите вид образованного ими четырёхугольника и вычислите его периметр, если диагональ квадрата равна см.

Найдите периметр квадрата по данным на рисунке. докажите что диагонали квадрата являются биссектрисами его углов

Источник

Квадрат, его свойства и признаки.

В теоретической части разработки дано определение квадрата, перечислены и доказаны его свойства, перечислены и доказаны признаки квадрата. К каждому понятию приведены рисунки. Практическая часть содержит большое количество заданий на любой вкус, есть простые задачи, а есть те, над которыми нужно подумать.

Просмотр содержимого документа
«Квадрат, его свойства и признаки.»

Квадрат, его свойства и признаки.

Определение. Квадратом называется прямоугольник, у которого все стороны равны.

докажите что диагонали квадрата являются биссектрисами его углов

докажите что диагонали квадрата являются биссектрисами его углов

Для квадрата можно ввести несколько определений. Самое ёмкое мы уже привели. Но можно определить квадрат следующим образом:

Квадратом называется четырёхугольник, у которого все стороны равны, а углы прямые.

Квадратом называется параллелограмм, у которого все стороны и углы равны.

Квадратом называется ромб, у которого все углы прямые.

Поскольку квадрат является и параллелограммом, и прямоугольником, и ромбом, то он обладает теми же свойствами, что и все перечисленные четырёхугольники.

У квадрата диагонали пересекаются и точкой пересечения делятся пополам.

У квадрата диагонали взаимно перпендикулярны.

У квадрата диагонали являются биссектрисами его углов.

У квадрата диагонали равны.

У квадрата стороны являются высотами.

Каждая диагональ квадрата делит его на равные прямоугольные треугольники.

Теперь определим признаки квадрата.

ТЕОРЕМА (I признак). Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

докажите что диагонали квадрата являются биссектрисами его углов

Дано: докажите что диагонали квадрата являются биссектрисами его углов– прямоугольник

докажите что диагонали квадрата являются биссектрисами его углов

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

Так как докажите что диагонали квадрата являются биссектрисами его углов– прямоугольник, то у него противолежащие стороны равны.

докажите что диагонали квадрата являются биссектрисами его углов

докажите что диагонали квадрата являются биссектрисами его угловквадрат (по определению), ч.т.д.

Т докажите что диагонали квадрата являются биссектрисами его угловЕОРЕМА (II признак). Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.

Дано: докажите что диагонали квадрата являются биссектрисами его углов– прямоугольник

докажите что диагонали квадрата являются биссектрисами его углов

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

Рассмотрим докажите что диагонали квадрата являются биссектрисами его углов.

докажите что диагонали квадрата являются биссектрисами его угловпо свойству диагоналей прямоугольника, значит, докажите что диагонали квадрата являются биссектрисами его углов– медиана (по опред-нию).

докажите что диагонали квадрата являются биссектрисами его угловвысота докажите что диагонали квадрата являются биссектрисами его углов, т.к. докажите что диагонали квадрата являются биссектрисами его углов. Значит, в докажите что диагонали квадрата являются биссектрисами его углов докажите что диагонали квадрата являются биссектрисами его угловявляется и медианой и высотой, поэтому этот треугольник является равнобедренным (по признаку равнобедренного треугольника), т.е. докажите что диагонали квадрата являются биссектрисами его углов. Согласно I признаку квадрата, прямоугольник докажите что диагонали квадрата являются биссектрисами его угловявляется квадратом, ч.т.д.

ТЕОРЕМА (III признак). Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

докажите что диагонали квадрата являются биссектрисами его углов

Дано: докажите что диагонали квадрата являются биссектрисами его углов– прямоугольник

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

Т докажите что диагонали квадрата являются биссектрисами его угловЕОРЕМА (IV признак). Если в ромбе диагонали равны, то этот ромб является квадратом.

Дано: докажите что диагонали квадрата являются биссектрисами его углов– ромб

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

Т докажите что диагонали квадрата являются биссектрисами его угловЕОРЕМА (V признак). Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.

Дано: докажите что диагонали квадрата являются биссектрисами его углов– параллелограмм

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

Так как докажите что диагонали квадрата являются биссектрисами его углов, то по II признаку ромба, параллелограмм докажите что диагонали квадрата являются биссектрисами его угловявляется ромбом.

Т ЕОРЕМА (VI признак). Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.

Дано: докажите что диагонали квадрата являются биссектрисами его углов– четырёхугольник

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

2. Так как , то параллелограмм докажите что диагонали квадрата являются биссектрисами его угловявляется квадратом (по V признаку квадрата), ч.т.д.

Т ЕОРЕМА (VII признак). Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.

Дано: докажите что диагонали квадрата являются биссектрисами его углов– четырёхугольник

Доказать: докажите что диагонали квадрата являются биссектрисами его углов– квадрат.

1. Так как , то четырёхугольник докажите что диагонали квадрата являются биссектрисами его угловявляется ромбом (по V признаку ромба).

3. Итак, прямоугольник докажите что диагонали квадрата являются биссектрисами его углов, у которого все стороны равны, является квадратом (по определению), ч.т.д.

Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.

Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

Если в ромбе диагонали равны, то этот ромб является квадратом.

Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.

Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.

Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.

В
четырёхугольнике диагонали взаимно перпендикулярны. Докажите, что отрезки, соединяющие середины противоположных сторон, равны.

В равнобедренный прямоугольный треугольник, каждый катет которого равен см, вписан квадрат, имеющий с ним один общий угол. Найдите периметр квадрата.

В равнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Определите сторону квадрата, если известно, что гипотенуза равна 30 дм.

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них втрое больше другой и что диагональ квадрата равна дм.

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна см.

Через вершины квадрата проведены прямые, параллельные его диагоналям. Определите вид образованного ими четырёхугольника и вычислите его периметр, если диагональ квадрата равна см.

Н
айдите периметр квадрата по данным на рисунке.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *