драйвер gpu что это
Драйвер для видеокарты — что это такое и зачем он нужен?
Каждый компьютер (ноутбук, планшет) состоит из различных устройств, которые ещё называют «комплектующими», соединенными в одно целое. Это материнская плата, процессор, видеокарта, накопитель памяти и так далее. Чтобы операционная система распознала каждое подключенное устройство и поняла, как его использовать, существует программное обеспечение для связи устройства с операционной системой. Именно такая программа и называется драйвер. Слово это английское (driver) и может переводиться как «водитель, машинист», то есть тот, кто управляет каким-либо устройством. Думается, смысл использования этого слова в данном случае понятен: драйвер — это программа отвечающая за работу конкретного компьютерного устройства.
В операционной системе Windows для некоторых устройств уже имеется набор драйверов и они могут устанавливаться автоматически. Например, флешки, мышки, клавиатуры начинают работать практически сразу после подключения. Видеокарта, которая ещё может называться «видеоадаптер» или «графический ускоритель» тоже нуждается в таком драйвере, чтобы работать в компьютере. Но «встроенных» драйверов для подключаемой видеокарты система Windows, как правило, не имеет. Если вы просто вставите купленную видеокарту в системный блок, который настроен и работает, то ничего не произойдет. Точнее, система «сообразит», что подключено новое устройство и потребует установить тот самый драйвер. И если отказаться от установки, то использовать видеокарту по своему назначению не получится.
Устанавливается драйвер как и любая другая компьютерная программа. Сначала вам нужно скачать установочный файл на свой компьютер, потом запустить, принять лицензионное соглашение и ждать окончания установки. Подробнее об установке или обновлении драйвера видеокарты читайте в этой статье. Для полноценного функционирования видеокарты необходимо регулярно обновлять драйвер до последней версии. Компания NVIDIA постоянно выпускает улучшенные версии драйверов для своих продуктов линейки GeForce. Скачать последнюю актуальную версию для своей модели графического ускорителя NVIDIA GeForce вы всегда сможете на этом сайте.
Что такое GPU и в чём разница между видеокартой
Для проведения вычислительных операций в каждом современном компьютере предусмотрен не только центральный, но ещё и графический процессор (GPU). Последний преимущественно используется для отрисовки графики.
В этой статье разберёмся, какие бывают графические процессоры, чем они отличаются GPU от видеокарт, а также как узнать, какой именно GPU установлен в ПК или ноутбуке.
Что такое GPU
Что такое GPU в компьютере и для чего он используется
GPU это вспомогательный микрочип, который берёт часть вычислительных операций на себя вместо процессора. И за счёт специализированной архитектуры, GPU лучше подходит для проведения расчётов с плавающей точкой, тогда как CPU больше ориентирован на работу в многопоточном режиме.
То есть видеокарта GPU способна быстро проводить расчёты, где используется одна или схожая формула (например, вычисление точки затенения графики при попадании тени на текстуру). Центральный процессор же ориентирован на проведение расчётов сразу в несколько потоков, когда пользователь работает одновременно с большим количеством приложений.
Графический процессор и видеокарта одно и то же
Многие считают, что графический процессор (GPU) и видеокарта — это синонимы. Но это — ошибочное мнение. Графический процессор (GPU) — это микрочип, который представляет собой кремниевый кристалл. Визуально схож на CPU. Но архитектура GPU кардинально отличается от той, что используется в обычном центральном процессоре. В видео это объясняется простым языком
Видеокарта — это плата, которая включает в себя графический процессор, оперативную память, линию питания, шлюз для обмена информации (по линии PCI Express), а также набор видеовыходов для подключения мониторов.
То есть GPU — это часть видеокарты. С технической стороны, видеоадаптер — это мини-компьютер. Ведь у него есть собственный процессор (графический), ОЗУ, шина данных.
Что такое интегрированный графический процессор
Видеокарты вплоть до 2005 года выпускались в форме отдельной платы, подключаемой к материнской плате компьютера или ноутбука. Но затем графические процессоры (GPU) начали интегрировать в CPU, такие кристаллы принято обозначать как iGPU.
У них нет собственной оперативной памяти или кэша. Соответственно, при отрисовке графики они резервируют часть имеющейся в компьютере ОЗУ.
Также интегрированные GPU менее производительные. И за счет этого — потребляют в десятки раз меньше электроэнергии. Именно поэтому их чаще всего и используют в производстве недорогих ноутбуков, портативной техники.
Что такое графический процессор(GPU), интегрированный в CPU с технической точки зрения? Это отдельный кремниевый микрочип, который находится на одной плате («подложке») с центральным процессором. То есть он работает отдельно, хоть и использует ту же самую линию питания, что и CPU.
Как узнать какой GPU в компьютере
Узнать, какой графический чип установлен в ПК, дискретный или интегрированный можно двумя способами:
Есть нюанс: во многих современных ноутбуках устанавливается одновременно и интегрированная, и дискретная видеокарта. По умолчанию используется iGPU. А дискретный GPU задействуется в тех ситуациях, когда производительности iGPU недостаточно (например, при запуске видеоигры, приложения для видеомонтажа).
Графический процессор GPU при выполнении расчётов довольно сильно нагревается. Это специфика кремниевых кристаллов.
Температура свыше 100 градусов существенно ускоряет деградацию кремниевого кристалла. И именно перегрев — одна из самых распространённых причин выхода из строя видеокарт.
А для тестирования можно воспользоваться бесплатной утилитой Furmark.
Что делать, если температура в нагрузке CPU слишком высокая? Подробно описано здесь
Что такое дискретный графический процессор
Дискретный графический процессор — это тот, который устанавливается отдельно от CPU. Поставляется в форме платы, чаще всего — с портом PCI Express для подключения к материнской плате.
Недостатки встроенного GPU в компьютере
Ключевые недостатки интегрированных графических процессоров (iGPU):
Но есть у iGPU и весомое преимущество. Это малое энергопотребление.
Для сравнения, видеокарта GPU Nvidia Geforce последнего поколения потребляет порядка 300 Вт в нагрузке. Интегрированный графический процессор — порядка 3 – 10 Вт (в зависимости от модели видеокарты). Также следует упомянуть, что в игровых приставках последних поколений (XBOX, PlayStation), а также в портативной игровой консоли Steam Deck используются именно iGPU.
Аналитики вообще считают, что в ближайшие 10 – 20 лет дискретные видеокарты вообще станут невостребованными и их производство вовсе прекратят.
Итого, в каждом ПК или ноутбуке устанавливается два процессора, один из которых — графический( GPU). Интегрированные iGPU отлично подходят для «офисных» ПК, тогда как с дискретными GPU — для игровых компьютеров или так называемых «графических станций». А какая видеокарта установлена в вашем ПК или ноутбуке? Расскажите об этом в комментариях.
Не играми едиными. Ускорение программ с помощью видеокарты
Содержание
Содержание
Что такое видеокарта, знает каждый, ведь это главный элемент ПК, отвечающий за игры. И чем он мощнее, тем лучше. Однако в словосочетание «графический адаптер» вложено намного больше смысла. И кроме умения отапливать помещение и жрать электроэнергию «майнить» видеокарты способны ускорять работу некоторых полезных программ. В их число входят приложения для видеомонтажа, графического дизайна, 3D-моделирования, VR-разработок.
Техническая сторона вопроса
Обычно основная часть нагрузки ложится на центральный процессор. Но есть задачи, с которыми GPU справится во много раз быстрее, и было бы глупо этим не воспользоваться. Логично, что чаще всего это касается программ для работы с графикой, видео и 3D-моделированием.
Во время GPU-ускорения задействуется исключительно память видеокарты. Для простой работы с FHD достаточно 2 ГБ. Однако, когда один кадр компонуется из нескольких (картинка в картинке) или используются эффекты, одновременно обрабатывающие несколько кадров (шумодавы и т. д.), расход возрастает. Для UHD/4K-видео необходимо уже минимум 4 ГБ видеопамяти.
Конечный прирост производительности зависит от правильности настройки и общих параметров системы. В случае, например, рендеринга иногда разница с CPU составляет разы, а это сэкономленное время, которое, как известно, — деньги. Гарантировать точный результат ускорения не возьмется ни один производитель, ссылаясь на индивидуальность каждой системы.
Любая видеокарта в той или иной степени способна проводить сложные вычисления и обрабатывать графику. Больше других акцентирует внимание на неигровых возможностях и технологиях своих GeForce компания nVidia.
Тензорные ядра — присутствуют в адаптерах серии RTX, повышают производительность и энергоэффективность. Поддержка ИИ ускоряет расчеты и работу с графикой.
CUDA — проприетарная технология nVidia, доступная для устройств GTX и RTX. Позволяет использовать графический процессор для вычислений общего назначения, улучшает работу с фото, видео и 3D.
NVENC — отдельный аппаратный блок, способный кодировать и декодировать видеопоток. Благодаря этому разгружаются центральный и графический процессоры для запуска игр и других ресурсоемких задач. В первую очередь это интересно стримерам, но многие программы видеомонтажа уже приспособили NVENC под себя.
NVIDIA STUDIO DRIVER — выходит для видеокарт серии 10хх и моложе. Оптимизирует работу адаптера под такие приложения, как Autodesk Maya, 3ds Max, Arnold 5, DaVinci Resolve и т. д.
Карты AMD тоже хорошо справляются с вычислениями и обработкой графики, но любит говорить об этом исключительно компания Apple. AMD использует открытые технологии OpenGL и Vulcan — альтернативу CUDA.
Программы, работающие с GPU-ускорением
О возможности ускорения программы с помощью видеокарты можно узнать на официальном сайте. Все ведущие производители софта дают четкие инструкции, какая видеокарта подойдет и как включить GPU-ускорение. А первое, что приходит на ум, когда речь идет о работе с графикой и видео, — решения студии Adobe.
Adobe Premiere Pro использует вычислительные ресурсы видеокарт, начиная с версии CS5. Текущие версии для Windows поддерживают все современные GPU (включая встроенную графику Intel). CS6 и выше имеют функцию стабилизации видео Warp Stabilizer, которая устраняет дрожание камеры. Плагин использует GPU-ускорение только при финальном рендеринге изображения. Также в CS6 появился рендер Ray-traced 3D, который обсчитывает на видеокарте 3D-слои, камеру и источники света в композиции. Adobe Premiere CC научился работать одновременно с несколькими видеокартами, причем допускается использование разных серий и даже производителей (MultipleGPU). Выигрыш зависит от общей конфигурации ПК. Интересные возможности дает использование GPU сторонними плагинами. Можно ускорять Premiere при помощи CUDA одной видеокарты, при этом его плагин будет ускоряться OpenGL другой видеокарты. Такие плагины, как Magic Bullet Looks, Elements3D и т. п. могут использовать ресурсы GPU независимо от настроек Adobe. Подробные требования приложения к видеокарте можно найти на официальном сайте.
Adobe Photoshop также активно использует видеокарты в процессе обработки изображений. Фоторедактор закрывает некоторые свои возможности, если видеокарта их не поддерживает. Яркими примерами таких функций являются «Деформация перспективы», «Умная резкость», «Размытие». Пользователю доступны три режима: базовый, обычный и расширенный. Наиболее интенсивно использует видеокарту последний. Если наблюдается снижение быстродействия, стоит переключиться на уровень ниже, воспользовавшись вкладкой Дополнительные параметры.
Кроме продукции компании Adobe нельзя не вспомнить такие программы, как 3ds Max, DaVinci Resolve и Vegas Pro.
Данные о поддержке наиболее адаптированных приложений производители видеокарт публикуют на своих официальных сайтах:
eGPU — внешний графический процессор
Этот раздел касается в первую очередь техники компании Apple. Купертиновцы любят делать упор на творческие возможности своих устройств, однако пользователи макбуков и аймаков ограничены исходной комплектацией. На помощь приходит eGPU — внешняя видеокарта, с помощью которой, по заявлению производителя, можно увеличить скорость обработки графики на Mac в несколько раз.
По сути, это обычная видеокарта в специальном боксе с блоком питания и дополнительным охлаждением. Она подключается к макам посредством Thunderbolt 3. Уже много лет Apple использует видеокарты AMD, и весь софт Apple затачивается под новый API Metal. Графические решения nVidia ощутимого прироста производительности на Apple не дают, так как из-за патологической жадности компании не смогли договориться, и весь софт на маке заточен исключительно под AMD. В отместку nVidia недавно полностью отменила поддержку CUDA на MacOS.
А что могут «профи»?
Есть заблуждение, что для работы с графикой нужно купить максимальную видеокарту, а процессор любой сойдет. Это не так. Если процессор не будет успевать давать задания видеокарте, пользователь столкнется с простоем в ресурсоемких задачах. Есть и обратная зависимость: слабая видеокарта может сдерживать процессор в финальном рендеринге. Важен баланс. Если потребности пользователя все же переросли возможности обычных моделей, можно направить свой взгляд на дорогие и узкоспециализированные решения. Технически профессиональные и потребительские видеокарты отличаются несильно, все дело в ПО.
Несколько лет назад компания nVidia выпустила первый TITAN — запредельную по производительности и цене игровую видеокарту. Но вместо того, чтобы стать нишевым продуктом, она была буквально сметена с прилавков. Оказалось, что карта прекрасно справляется с расчетами, и многие компании с удовольствием покупали ее вместо дорогих про-аналогов. Разумеется, nVidia быстро смекнула, в чем дело, и в начале 2018 года прикрыла лавочку запретила использовать графические процессоры GeForce и Titan в составе дата-центров. По словам nVidia, нельзя гарантировать их безотказную работу в жарких условиях (и это не фигуральный оборот) в режиме 24/7. В качестве альтернативы предлагается использовать, например, Tesla V100, который гораздо мощнее GeForce и стоит в десять раз больше создан специально для работы в условиях ЦоД.
nVidia имеет три линейки профессиональных видеокарт: Quadro, NVS и Tesla.
NVS — многопортовые карточки, созданные для подключения большого количества мониторов в одну панель. Например, с их помощью в Макдональдсе можно выбрать бигмак с помидорами или беконом, а в аэропорте найти свой рейс. По сути, это самая обычная «затычка», на которой распаяли много портов. Очень слабые по железу и очень дорогие по соотношению цена/производительность, но ценят их не за FPS в Батле.
Компания AMD в качестве профессионального решения предлагает серию Radeon Pro. Также у них есть вычислительные аналоги Tesla с космическим ценником под названием Instinct.
vGPU — использовать нельзя игнорировать
За июнь-июль к нам обратилось почти два десятка компаний, интересовавшихся возможностями виртуальных GPU. «Графикой» от Cloud4Y уже пользуется одна из крупных «дочек» Сбербанка, но в целом услуга не слишком популярная. Так что подобная активность нас весьма порадовала. Видя рост интереса к технологии, мы решили чуть подробнее рассказать про vGPU.
«Озёра данных», полученные в результате научных экспериментов и исследований, Deep Learning и другие направления работы с ИИ, моделирование крупных и сложных объектов — всё это требует высокопроизводительного «железа». Хорошо, если оно есть и позволяет быстро решать текущие задачи. Вот только из-за возрастающей вычислительной сложности задач (в первую очередь касается для бизнес-аналитики, рендеринга, DL-алгоритмов и фреймворков) аппаратные мощности настольных и даже серверных CPU всё чаще становятся бесполезны.
Выход был найден в использовании вычислений на GPU. Эта технология ускорения графики обеспечивает разделение ресурсов одного графического процессора между несколькими виртуальными компьютерами. GPU изначально проектировался для работы с графикой, потому состоит из тысячи мелких ядер, используемых для эффективной обработки параллельных задач. При этом на GPU выполняется часть самых ресурсоемких вычислений, остальное берёт на себя CPU.
Вычисления с помощью GPU придумала компания Nvidia ещё в 2007 году. Сегодня эта технология вышла на новый уровень и применяется в ЦОДах крупнейших предприятий и научных лабораторий. Однако у традиционного подхода есть один весомый недостаток: закупка физического оборудования обходится весьма недёшево. А если вспомнить скорость устаревания «железа», то становится ещё грустнее.
Проблему призвана решить технология виртуальных графических процессоров: vGPU. С её помощью пользователи могут удалённо запускать тяжёлые приложения вроде AutoCAD, 3DS Max, Maya, Sony Vegas Pro. Виртуализация быстро отвоевала свою долю рынка. Ведь какой русский data-scientist не любит быстрых вычислений на видеокартах NVidia Tesla?
Здесь стоит отметить, что до появления vGPU использовались другие методы ускорения обработки графики: Virtual Shared Graphics Acceleration (vSGA) и Virtual Dedicated Graphics Acceleration (vDGA). Решение vGPU объединило лучшее из обеих технологий. Как и в случае vSGA, в среде vGPU предполагается совместное использование GPU и RAM несколькими виртуальными рабочими столами, но при этом каждая ВМ передаёт команды напрямую к GPU, как в случае с vDGA.
Зачем вообще нужны vGPU
Облачные вычисления с использованием vGPU позволяют компаниям справляться с задачами, которые раньше невозможно было решить. Или возможно, но для этого требовалось нереально много ресурсов. 1 современный GPU-сервер способен заменить до 100 обычных CPU. Есть и другие, ещё более внушительные цифры. Это не шутки: решения Nvidia обрабатывают петабайты данных в несколько раз быстрее классических CPU-серверов. А тот же Google Cloud предлагает виртуальные машины с GPU, выдающие до 960 терафлопс.
Многие специалисты нуждаются в мощных устройствах, способных выполнять параллельные вычисления. Архитекторы и инженеры используют технологию vGPU в системах проектирования (тот же Autodesk, к примеру). Дизайнеры работают с цифровым фото- и видеоконтентом (Photoshop, CorelDraw). Виртуальные машины с графическими процессорами требуются и медицинским учреждениям, которые аккумулируют и анализируют данных о пациентах и заболеваниях. Работает с GPU и «Яндекс».
При всём при этом решения на базе vGPU пока что не получили широкого распространения в мире. Так, в 2018 году NetApp провёл опрос среди компаний, использующих в работе графические процессоры. Результаты показали, что 60% организаций по-прежнему работают на собственной ИТ-инфраструктуре. «Облаком» же пользуются лишь 23%. В России проникновение технологии облачных вычислений имеет меньшее значение. Но благодаря новым аппаратным и программным решениям число компаний, использующих виртуальные машины с GPU, постоянно растёт.
Решения для vGPU
Разработкой технологий виртуализации графических ускорителей занимается много компаний, но среди них есть безусловные лидеры.
Один из наиболее авторитетных разработчиков решений в сфере облачных решений, компания VMware предлагает компаниям гипервизор ESXi, под которым скорость работы виртуальных графических процессоров сопоставима с реализациями на голом железе. В недавнем обновлении разработчик отключил балансировщик нагрузки vMotion и добавил поддержку технологии DirectPath I/O, которая связывает драйвер CUDA с ВМ в обход гипервизора и ускоряет передачу данных.
Nvidia тоже старается соответствовать ожиданиям рынка, и для этого выпустила opensource-платформу Rapids. Решение объединяет несколько библиотек для работы с архитектурой CUDA, что упрощает работу с данными во время тренировки нейросетей и позволяет автоматизировать работу с Python-кодом. Использование Rapids с алгоритмом машинного обучения XGBoost даёт 50-кратное увеличение производительности по сравнению с системами на базе CPU.
Своя технология есть и у AMD. Платформа называется ROCm. Она использует технологию SR-IOV, которая делит аппаратные возможности физического устройства между несколькими виртуальными машинами. Ресурсы одного ускорителя можно разделить между шестнадцатью пользователями, поддерживая равную производительность для каждого из них. Таким образом ускоряется передача данных между облачными CPU и GPU. Также используется специальный диалект C++ под названием HIP, который упрощает выполнение математических операций на GPU.
Intel строит свою технологию базе кросс-платформенного гипервизора Citrix XenServer 7, который в 2017 году получил сертификат соответствия ФСТЭК. Решение объединяет работу стандартного GPU-драйвера и виртуальной машины. То есть «виртуалка» может поддерживать работу тяжёлых приложений на устройствах большого (несколько сотен) количества пользователей.
Рыночные перспективы
Независимые аналитики считают, что объём продаж решений для HPC-систем достигнет 45 млрд долларов к 2022 году. Разработчики платформ также ожидают увеличения спроса на высокопроизводительные системы. Это ожидание подкрепляется популярностью Big Data и часто возникающей необходимостью обрабатывать крупные объёмы данных.
Также рост спроса на vGPU может стимулировать развитие гибридных технологий, объединяющих GPU и CPU в одном устройстве. В таких интегрированных решениях два вида ядер используют общий кэш, что ускоряет перенос данных между графическими и традиционными процессорами.
Гибриды в корне изменили подход к виртуализации и распределению виртуальных ресурсов в рамках дата-центров. А решения с открытым исходным кодом наподобие ROCm и Rapids позволяют операторам ЦОД эффективнее использовать вычислительные ресурсы, повышая производительность оборудования.
Есть и другое мнение. Например, что виртуальные GPU будут вытеснены оптическими чипами с фотонным кодированием данных. Такие решения уже существуют и используются для машинного обучения. Более того, они кажутся производительнее обычного GPU. Но технология ещё сыровата.
Какой можно сделать вывод? Несмотря на возможное появление аналогов, vGPU — вполне перспективное направление, способное решать большое количество задач. Но подходит оно не всем. Так что запятую в заголовке можете поставить сами.




