дробь что это в математике

Дробь (математика)

8/ 13дробь что это в математикечислитель
числительзнаменательзнаменатель
Две записи одной дроби

Содержание

Виды дробей

Обыкновенные дроби

дробь что это в математике

дробь что это в математике

Обыкновенная (или простая) дробь — запись рационального числа в виде дробь что это в математикеили дробь что это в математикегде дробь что это в математикеГоризонтальная или косая черта обозначает знак деления, в результате чего получается частное. Делимое называется числителем дроби, а делитель — знаменателем.

Обозначения обыкновенных дробей

Есть несколько видов записи обыкновенных дробей в печатном виде:

Правильные и неправильные дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной, и представляет рациональное число, по модулю большее или равное единице.

Например, дроби дробь что это в математике, дробь что это в математикеи дробь что это в математике— правильные дроби, в то время как дробь что это в математике, дробь что это в математике, дробь что это в математикеи дробь что это в математике— неправильные дроби. Всякое целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

Смешанные дроби

Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой.

Например, дробь что это в математике. В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь, а также из-за более громоздкой записи и менее удобных вычислений.

Высота дроби

Высота обыкновенной дроби — модуль суммы числителя и знаменателя этой дроби. Высота рационального числа — модуль суммы числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби дробь что это в математикеравна дробь что это в математике. Высота же соответствующего рационального числа равна дробь что это в математике, так как дробь сокращается на дробь что это в математике.

Составные дроби

Многоэтажной, или составной, дробью называется выражение, содержащее несколько горизонтальных (или реже — наклонных) черт:

дробь что это в математикеили дробь что это в математикеили дробь что это в математике

Десятичные дроби

Десятичной дробью называют позиционную запись дроби. Она выглядит следующим образом:

дробь что это в математике

Пример: дробь что это в математике.

Часть записи, которая стоит до позиционной запятой, является целой частью числа (дроби), а стоящая после запятой — дробной частью. Всякую обыкновенную дробь можно преобразовать в десятичную, которая в этом случае либо имеет конечное число знаков после запятой, либо является периодической дробью.

Вообще говоря, для позиционной записи числа́ можно использовать не только десятичную систему счисления, но и другие (в том числе и специфические, такие, как фибоначчиева).

Значение дроби и основное свойство дроби

Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные.

Если умножить числитель и знаменатель дроби на одинаковую величину:

дробь что это в математике

то значение дроби останется прежним, хотя дроби — разные. Например:

дробь что это в математике

И обратно, если числитель и знаменатель заданной дроби имеют общий делитель, то обе части можно разделить на него; такая операция называется сокращением дроби. Пример:

дробь что это в математике— здесь числитель и знаменатель дроби сократили на общий делитель 4.

Несократимой называется дробь, числитель и знаменатель которой взаимно просты, т. е. не имеют общих делителей, кроме дробь что это в математике

Для десятичной дроби запись почти всегда однозначна, однако имеются исключения. Пример:

дробь что это в математике— две разные дроби соответствуют одному числу.

Действия над дробями

В этом разделе рассматриваются действия над обыкновенными дробями. О действиях над десятичными дробями см. Десятичная дробь.

Приведение к общему знаменателю

Для сравнения, сложения и вычитания дробей их следует преобразовать (привести) к виду с одним и тем же знаменателем. Пусть даны две дроби: дробь что это в математикеи дробь что это в математике. Порядок действий:

После этого знаменатели обеих дробей совпадают (равны M). Вместо наименьшего общего кратного можно в простых случаях взять в качестве M любое другое общее кратное, например, произведение знаменателей. Пример см. ниже в разделе Сравнение.

Сравнение

Чтобы сравнить две обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители получившихся дробей. Дробь с бо́льшим числителем будет больше.

Пример. Сравниваем дробь что это в математикеи дробь что это в математике. НОК(4, 5) = 20. Приводим дроби к знаменателю 20.

дробь что это в математике

Следовательно, дробь что это в математике

Сложение и вычитание

Чтобы сложить две обыкновенные дроби, следует привести их к общему знаменателю. Затем сложить числители, а знаменатель оставить без изменений:

дробь что это в математике+ дробь что это в математике= дробь что это в математике+ дробь что это в математике= дробь что это в математике

НОК знаменателей (здесь 2 и 3) равно 6. Приводим дробь дробь что это в математикек знаменателю 6, для этого числитель и знаменатель надо умножить на 3.
Получилось дробь что это в математике. Приводим дробь дробь что это в математикек тому же знаменателю, для этого числитель и знаменатель надо умножить на 2. Получилось дробь что это в математике.
Чтобы получить разность дробей, их также надо привести к общему знаменателю, а затем вычесть числители, знаменатель при этом оставить без изменений:

дробь что это в математикедробь что это в математике= дробь что это в математикедробь что это в математике= дробь что это в математике

НОК знаменателей (здесь 2 и 4) равно 4. Приводим дробь дробь что это в математикек знаменателю 4, для этого надо числитель и знаменатель умножить на 2. Получаем дробь что это в математике.

Умножение и деление

Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

дробь что это в математике

В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

дробь что это в математике

В общем случае, числитель и знаменатель результирующей дроби могут не быть взаимно простыми, и может потребоваться сокращение дроби, например:

дробь что это в математике

Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую на дробь, обратную второй:

дробь что это в математике

дробь что это в математике

Преобразование между разными форматами записи

Чтобы преобразовать обыкновенную дробь в дробь десятичную, следует разделить числитель на знаменатель. Результат может иметь конечное число десятичных знаков, но может быть и бесконечной периодической дробью. Примеры:

дробь что это в математике дробь что это в математике— бесконечно повторяющийся период принято записывать в круглых скобках.

Чтобы преобразовать десятичную дробь в дробь обыкновенную, следует представить её дробную часть в виде натурального числа, делённого на соответствующую степень 10. Затем к результату приписывается целая часть со знаком, формируя смешанную дробь. Пример:

дробь что это в математике

История и этимология

Впервые в Европе данный термин употребил Леонардо Пизанский (1202). Поначалу европейские математики оперировали только с обыкновенными дробями, а в астрономии — с шестидесятеричными. Полноценная теория обыкновенных дробей и действий с ними сложилась в XVI веке (Тарталья, Клавиус).

В древней Руси дроби называли долями или ломаными числами. Термин дробь, как аналог латинского fractura, используется в «Арифметике» Магницкого (1703) как для обыкновенных, так и для десятичных дробей.

В Европе первые десятичные дроби ввёл Иммануил Бонфис около 1350 года, но широкое распространение они получили только после появления сочинения Симона Стевина «Десятая» (1585).

Обобщения

дробь что это в математике

См. также

Литература

Примечания

Фиксированное значение1/4 (Четверть) • 1/3 (Треть) • 1/2 (Половина) • 1/1 (всё, целое)См. такжеПриставки СИ • Целая часть • Десятичная дробь • Дробная часть • Десятичный разделитель • Дробь • Часть • Доля (музыка) • Доля (единица измерения)

Полезное

Смотреть что такое «Дробь (математика)» в других словарях:

Дробь — В Викисловаре есть статья «дробь» Наименование символа «⁄» (другое, распространённое по большей части в английском языке, название символа солидус (англ.), или слэш), например, в номерах домов. Так номер дома «5/17» читается «пять… … Википедия

Математика гармонии — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия

МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера

Периодическая дробь — Десятичная дробь дробь со знаменателем 10n, где n натуральное число. Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части … Википедия

Медианта (математика) — У этого термина существуют и другие значения, см. Медианта. Медиантой двух дробей и с положительными знаменателями называется дробь, числитель которой равен сумме числителей, а знаменатель сумме знаменателей, двух данных дробей:… … Википедия

Источник

Доли, обыкновенные дроби: определения, обозначения, примеры, действия с дробями

Рассмотрение данной темы мы начнем с изучения понятия доли в целом, которое даст нам более полное понимание смысла обыкновенной дроби. Дадим основные термины и их определение, изучим тему в геометрическом толковании, т.е. на координатной прямой, а также определим список основных действий с дробями.

Доли целого

Представим некий предмет, состоящий из нескольких, совершенно равных частей. Например, это может быть апельсин, состоящий из нескольких одинаковых долек.

Доля целого или доля – это каждая из равных частей, составляющих целый предмет.

Очевидно, что доли могут быть разные. Чтобы наглядно пояснить это утверждение, представим два яблока, одно из которых разрезано на две равные части, а второе – на четыре. Ясно, что размеры получившихся долей у разных яблок будут различаться.

Доли имеют свои названия, которые зависят от количества долей, составляющих целый предмет. Если предмет имеет две доли, то каждая из них будет определяться как одна вторая доля этого предмета; когда предмет состоит из трех долей, то каждая из них – одна третья и так далее.

Половина – одна вторая доля предмета.

Треть – одна третья доля предмета.

Четверть – одна четвертая доля предмета.

Понятие доли естественно расширяется с предметов на величины. Так, можно использовать для измерения небольших предметов доли метра (треть или одна сотая), как одной из единиц измерения длины. Аналогичным образом можно применить доли других величин.

Обыкновенные дроби, определение и примеры

Обыкновенные дробиприменяются для описания количества долей. Рассмотрим простой пример, который приблизит нас к определению обыкновенной дроби.

Числитель и знаменатель

Т.е. числитель – число, расположенное сверху над чертой обыкновенной дроби (или слева от наклонной черты), а знаменатель – число, расположенное под чертой (справа от наклонной черты).

Какой же смысл несут в себе числитель и знаменатель? Знаменатель обыкновенной дроби указывает на то, из скольких долей состоит один предмет, а числитель дает нам информацию о том, каково рассматриваемое количество таких долей. К примеру, обыкновенная дробь 7 54 указывает нам на то, что некий предмет состоит из 54 долей, и для рассмотрения мы взяли 7 таких долей.

Натуральное число как дробь со знаменателем 1

Черта дроби как знак деления

Использованное выше представление данного предмета как n долей является не чем иным, как делением на n равных частей. Когда предмет разделен на n частей, мы имеем возможность разделить его поровну между n людьми – каждый получит свою долю.

При помощи обыкновенной дроби мы можем записать итог деления двух натуральных чисел. К примеру, деление 7 яблок на 10 человек запишем как 7 10 : каждому человеку достанется семь десятых долей.

Равные и неравные обыкновенные дроби

Результатом сравнения обыкновенных дробей может быть: равны или неравны.

В случае, когда выясняется, что дроби не являются равными, обычно необходимо также узнать, какая из данных дробей меньше, а какая – больше. Чтобы дать ответ на эти вопросы, обыкновенные дроби сравнивают, приводя их к общему знаменателю и затем сравнив числители.

Дробные числа

Дроби на координатном луче

Все дробные числа, как и любое другое число, имеют свое уникальное месторасположение на координатном луче: существует однозначное соответствие между дробями и точками координатного луча.

дробь что это в математике

Здесь работает тот же принцип, что и с целыми числами: на горизонтальном, направленном вправо координатном луче точка, которой соответствует большая дробь, разместится правее точки, которой соответствует меньшая дробь. И наоборот: точка, координата которой – меньшая дробь, будет располагаться левее точки, которой соответствует бОльшая координата.

Правильные и неправильные дроби, определения, примеры

В основе разделения дробей на правильные и неправильные лежит сравнение числителя и знаменателя в пределах одной дроби.

Источник

Дроби обыкновенные правильные и неправильные, смешанные и составные.

Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Дроби являются частью поля рациональных чисел. По способу записи дроби делятся на 2 формата: обыкновенные вида дробь что это в математикеи десятичные.

Числитель дроби — число, показывающее количество взятых долей (находится в верхней части дроби – над чертой). Знаменатель дроби — число, показывающее, на сколько долей разделена единица (находится под чертой – в нижней части). Обыкновенные дроби, в свою очередь делятся на: правильные и неправильные, смешанные и составные. Обыкновенные дроби тесно связаны с единицами измерения. 1 метр содержит в себе 100 см. Что означает, что 1 м разделён на 100 равных долей. Таким образом, 1 см = 1/100 м (один сантиметр равен одной сотой метра).

дробь что это в математике

или 3/5 (три пятых), здесь 3 — числитель, 5 — знаменатель. Если числитель меньше знаменателя, то дробь меньше единицы и называется правильной:

дробь что это в математике

Если числитель равен знаменателю, дробь равна единице. Если числитель больше знаменателя, дробь больше единицы. В обоих последних случаях дробь называется неправильной:

дробь что это в математике

Чтобы выделить наибольшее целое число, содержащееся в неправильной дроби, нужно разделить числитель на знаменатель. Если деление выполняется без остатка, то взятая неправильная дробь равна частному:

дробь что это в математике

Если деление выполняется с остатком, то (неполное) частное дает искомое целое число, остаток же становится числителем дробной части; знаменатель дробной части остается прежним.

дробь что это в математике

Число, содержащее целую и дробную части, называется смешанным. Дробная часть смешанного числа может быть и неправильной дробью. Тогда можно из дробной части выделить наибольшее целое число и представить смешанное число в таком виде, чтобы дробная часть стала правильной дробью (или вовсе исчезла).

дробь что это в математике

К подобному виду обычно и приводят смешанные дроби.

Составные дроби.

Многоэтажной, или составной дробью является дробь, которая содержит в себе несколько горизонтальных (либо реже — наклонных) черт:

дробь что это в математикелибо дробь что это в математикелибо дробь что это в математике.

Источник

Дроби и доли.

дробь что это в математике

Дроби самая сложная тема для учеников начальных классов. Но даже самая трудная тема может стать простой и понятной. Для обучения детей нужно использовать фантазию и элементы игры. А главное – сохранять спокойствие.

В серьезных учебниках по математике есть знаки: и сложение, и вычитание, и умножение. А вот, привычного нам, с вами знака деления (:) – нет. Получается, что знаком деления (:) пользуются только ученики начальной школы? На самом деле – нет. Только этот знак можно писать и по-другому, вот такой чертой, она пишется посередине клетки:

дробь что это в математике

дробь что это в математике

Вот это все – деление.
Деление можно записывать не двумя точками, а горизонтальной полоской.
Так вот: любая математическая запись, в которой присутствует знак деления в виде черточки, называется дробью.
Слово «дробь» говорит само за себя – оно обозначает дробление или деление.
Для записи дробей используются цифры и черта, которую называют дробной.

Вы когда-нибудь видели военный парад? Идут солдаты стройными рядами, а впереди человек со знаменем (флагом) – знаменосец! И по знамени легко понять, к какому роду войск принадлежат эти солдаты. У дроби тоже есть «знаменосец» — это главное число, которое обозначает, на сколько равных частей разделили целое (предмет, фигуру или величину).

«Знаменосец» пишется под дробной чертой и называется ЗНАМЕНАТЕЛЬ.

А число, над чертой показывает, сколько таких частей взяли (или закрасили, или съели). Это число называют ЧИСЛИТЕЛЕМ.

дробь что это в математике

читается – две третьих, можно заменить по-другому — 2 : 3.

Рассмотрим еще одно число: раньше мы не могли на уроке математики 1 разделить на 2. А теперь – умеем: 1 разделить на 2 – это не что иное, как одна вторая. Что же это значит? Если в математике мы с вами не делали этого ни разу, то в жизни вы это делаем постоянно. Предположим, у вас есть яблоко. И вам нужно разделить его между вами и другом. Т.е. одно яблоко разделить на 2.

дробь что это в математике

Так что же за число такое – одна вторая, во-первых, это дробь потому что присутствует знак деления, во-вторых, оно меньше единицы.
Потому что нельзя один разделить на 2, чтобы получилось что-то больше 1.
В-третьих, оно обозначает, что мы целое разделили на 2 и взяли себе одну такую часть.

Давайте посмотрим на число:

дробь что это в математике

По правилу, которое мы с вами вывели: три четвертых – это тоже самое, что три разделить на 4.

дробь что это в математике

Давайте посмотрим, как это понять. Круг разделим на 4 равные части.
3 части закрасим желтым цветом. Это и есть три четвертых. Что же это значит?
Во-первых, это тоже дробь.
Во-вторых, она тоже меньше единицы.
И она обозначает, что круг мы разделили на 4 части
и закрасили желтым цветом – 3 таких части.

Итак,
как вы уже поняли: любая дробь будет иметь черту.
Ее так и называют – дробная черта. И обязательно будет стоять какое-то число над чертой и какое-то число под чертой.

Давайте научимся, как правильно читать дроби.
Читают их так: верхнее число всегда будет отвечать на вопрос: сколько?, а нижнее будет отвечать на вопрос: какая? или каких?

дробь что это в математике

дробь что это в математике

Сколько? – три, каких? – восьмых – три восьмых,
Сколько? – семь, каких? – девятых – семь девятых,
Сколько? – две, каких? – шестых – две шестых,
Сколько? – пять, каких? – седьмых – пять седьмых.

У чисел, которые вверху и внизу дроби есть свое научное название: верхнее число называется числитель, а нижнее – знаменатель.
Постарайтесь запомнить это. Это важно! Числитель – наверху, знаменатель – внизу.
Знаменатель показывает на сколько частей мы разделили наше целое, а числитель показывает – сколько частей целого мы с вами взяли.

Чтобы лучше запомнить, где числитель, где знаменатель, есть простая напоминалочка:
«ЧЕЛОВЕК ХОДИТ ПО ЗЕМЛЕ».
Ч – числитель – «над», З – знаменатель «под».

Есть одна разновидность дробей, которую в начальной школе выделяют в отдельную группу. Такие дроби называют долями. Если вам встретилось слово «доля», знайте, что это та же самая дробь, но только у нее числитель равен единице.

дробь что это в математике

Мы постоянно сталкиваемся с ними в жизни.

Чаще всего мы встречаемся в жизни именно с половиной:

дробь что это в математике

пол яблока — это одна вторая яблока, пол стакана – это одна вторая стакана.

Так же мы знакомы с одной третьей:

дробь что это в математике

– это не что иное, как треть.
Треть грейфрута – это значит, разделили грейфрут на 3 части и взяли одну.

Точно так же мы с вами называем одну четвертую четвертью.
Например – школьная четверть. Мы с вами делим учебный год на 4 части и берем одну часть. Это и есть – четверть.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.9 / 5. Количество оценок: 81

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *