дроссельный пакет что это

Гидравлический дроссель

Устройство регулируемого дросселя

дроссельный пакет что это

Площадь проходного сечения, выполненного в корпусе дросселя 1 изменяется в зависимости от положения запорно-регулирующнго элемента. В представленном примере показан игольчатый дроссель с коническим запорно-регулирующим элементом.

В момент касания поверхностей конуса и отверстия в корпусе, проходное сечение дросселя полностью закроется, течение жидкости через дроссель в этом случае невозможно.

Типы проходных сечений дросселей

Рассмотрим наиболее распространенные типы регулируемых дросселей.

Игольчатый дроссель

дроссельный пакет что это

Щелевой дроссель

дроссельный пакет что это

Запорно-регулирующий элемент, перемещаясь в гильзе, полностью или частично перекрывает дросселирующие отверстие.

Как и игольчатый дроссель чувствителен к загрязнениям, при этом пригоден для работы в широком диапазоне вязкости рабочей жидкости.

Щелевой дроссель лучше использовать для регулирования больших расходов.

Дроссель с продольной канавкой

дроссельный пакет что это

В запорно-регулирующем элементе выполнена наклонная лыска и канавка прямоугольного или треугольного сечения. Величина сопротивления дросселя определяется положением запорно-регулирующего элемента относительно отверстия, выполненного в гильзе.

Дросселирующая щель в аппаратах данного типа относительно короткая, смоченный периметр небольшой.

Дроссели с продольной канавкой хорошо приспособлены для работы на малых расходах.

Вычисление расхода через дроссель

Величина расхода жидкости через дроссель зависит от размера дроссельной щели и перепада давления на дросселе. Расход через дроссель можно определить по формуле:

дроссельный пакет что это

Так как расход через дроссельную щель зависит от давления на ее входе и выходе, дроссели используют для регулировки скорости движения выходных звеньев гидродвигателей (например гидроцилиндров) с постоянной нагрузкой, либо в приводах где изменение скорости при перемене нагрузки допустимо или желательно.

Обозначение дросселя на схеме

Условное обозначение дросселя показано на следующем рисунке.

дроссельный пакет что это

В гидроприводах часто используют дроссели с обратным клапаном, которые обеспечивают регулирование скорости только в одном направлении. Такой объединенный элемент обозначается на гидросхеме следующим образом.

дроссельный пакет что это

Исполнения промышленных дросселей

В промышленных гидроприводах применяют дроссели стыкового, фланцевого, модульного, встраиваемого монтажа.

Дроссели стыкового и фланцевого монтажа изготавливаются, как правило, для больших расходов.

Встраиваемые дроссели размещают в специальной монтажной плите, в которой выполнены соответствующие каналы, либо в корпусе, который может обеспечить, резьбовой, фланцевый, модульный или стыковой монтаж.

Модульный монтаж позволяет расположить дроссель совместно с другими элементами в общей модульной плите.

Источник

Гидравлические дроссели. Принципы действия и устройство

Гидравлический дро́ссель — регулирующий гидроаппарат, предназначенный для создания гидравлического сопротивления потоку жидкости. Дополнительное гидравлическое сопротивление создаётся за счёт изменения проходного сечения потока жидкости. Изменением гидравлического сопротивления гидродросселя создаётся необходимый перепад давлений на тех или иных элементах гидросистем, а также изменяется величина потока жидкости, проходящего через гидродроссель.

дроссельный пакет что это

Условное графическое обозначение гидродросселя: а)регулируемый гидродроссель; б)нерегулируемый гидродроссель. Гидродроссели по типу запорного элемента подразделяются на игольчатые, золотниковые, щелевые, тарельчатые и др. Регулируемый дроссель — это такой дроссель, у которого площадь его проходного сечения можно менять путём воздействия на его запорно-регулирующий элемент извне. Иногда функцию гидродросселя выполняют гидрораспределители. Гидродроссели используются в системах дроссельного регулирования гидропривода. Также гидродроссели используются в системах водоснабжения.

По принципу действия дроссели делятся на дроссели вязкостного сопротивления, в которых потери напора определяются вязкостным сопротивлением; дроссели инерционного сопротивления, в которых потери напора определяются деформацией потока (резким изменением сечения канала) и дроссели комбинированного сопротивления, в которых используются оба вида сопротивления.
По виду регулирования дроссели подразделяются на управляемые (проходное сечение дросселирующего отверстия в процессе работы может изменяться оператором) и неуправляемые (при работе проходное сечение остается неизменным).
По конструкции различают дроссели прямого действия, у которых расход жидкости зависит от перепада давления до и после дросселя и регуляторы скорости, поддерживающие постоянный расход жидкости независимо от величины нагрузки.
Дроссели часто применяются в сочетании с другими регулирующими устройствами.
В гидросистемах (гидронасос-гидрораспределитель-исполнительный орган) дроссель может быть установлен на входе в гидродвигатель — на напорной магистрали, на выходе — на сливе, а также параллельно гидродвигателю (исполнительному органу). Во всех случаях в системах должен быть предусмотрен предохранительный клапан, ограничивающий давление.

дроссельный пакет что это

На рис. 5.13 показан дроссель типа Г-77, который состоит из корпуса 1, передней крышки 2, задней крышки 3, дросселя 4, лимба 5, уплотнителя б, шкалы 7, гайки 8. Жидкость в дроссель подводится через отверстие 9 и, пройдя щель 10, отводится через отверстие 11.

В зависимости от углового положения щели дросселя 4 относительно оси 0-0 проходное сечение щели изменяется, что соответственно увеличивает или уменьшает расход жидкости, проходящей через дроссель. При настройке гайка 8 отжимается для свободного поворота дросселя 4. Отрегулированное и установленное необходимое сечение щели фиксируется гайкой 8, которая поджимается к лимбу 5.

дроссельный пакет что это

В качестве дроссельных устройств применяют также специальные управляющие дроссельные золотники, рис.5.14, позволяющие плавно изменять скорость жидкости в трубопроводах за счет изменения площади рабочего окна.

В управляющем золотнике 2 жидкость подвергается двойному дросселированию. Из насоса 1 жидкость под давлением поступает в золотник. При смещении золотника от нейтрального положения в золотнике образуется два проходных окна: на входе в гидродвигатель 3 и на выходе из него. Дросселирование жидкости через эти окна сопровождается потерей энергии, которая обуславливает потерю давления.

Дата добавления: 2015-04-18 ; просмотров: 282 ; Нарушение авторских прав

Источник

Гидродроссели: разновидности и назначение

Для контроля расхода жидкости в гидравлических системах используется гидродроссели. Устройство создает жидкостное сопротивление потока, регулируя скорость работы гидродвигателя путем перепада давления. В некоторых случаях с этой задачей справляются гидрораспределители (сумматоры и делители потока).

Управление потоком с помощью дросселя называется дросселированием.

Разновидности гидродросселей

На рисунке представлены обозначения гидродросселей двух типов:

дроссельный пакет что это

а) регулируемый тип; б) нерегулируемый тип.

На схеме дроссель обозначается в виде сужения потока. Стрелка указывает, что возможно изменение сопротивления извне. К типу (а) (регулируемые дроссели) относятся изделия, у которых внешним воздействием изменяется площадь сечения рабочего потока.

Гидравлические дроссели классифицируются по конструкции запорного элемента. Наиболее распространены:

Принцип действия

Изменение гидравлического сопротивления создает перепад давления между узлами гидросхемы.

Перепад давления находится в прямой зависимости от расхода и площади проходного сечения и в обратной – от плотности рабочей жидкости.

Соотношение описывается выражением:

Q = µ∙S дроссельный пакет что это

Q – расход жидкости, см3/с;

µ – коэффициент расхода (≈0,7);

S – площадь сечения, см2;

Pad – разница давлений, Па;

ρ – плотность жидкости, г/см3.

На скорость работы механизма также влияет геометрия дросселирующей щели, которая может быть конической, прямой, кольцевой и пр.

Важный параметр – характеристика дросселя. Это зависимость падения давления в распределителе от расхода проходящей через него рабочей жидкой среды. По типу соответствующего уравнения гидродроссели бывают линейные и квадратичные (нелинейные).

Гидродроссели линейные

Другие названия – вязкостные или инерционные. Проходное сечение имеет прямой профиль. Потери давления и расход на дросселе изменяются в зависимости от длины канала. Внутри создается ламинарное течение жидкости. Поэтому данный вид может используется только в маломощных системах с потерями давления ниже 0,3 МПа.

Чем длиннее проходной канал, тем выше площадь сечения, что предохраняет гидродроссель от скопления грязи и мусора на поверхности.

Существенный недостаток линейной конструкции – зависимость от вязкости жидкости и, как следствие, от температуры потока. Это резко ограничивает применение устройств в случае больших объемов двигателей.

Гидродроссели нелинейные

Это распространенный тип дросселей, т.к. на его работу практически не влияет температура жидкости, а режим течения внутри турбулентный. Это позволяет применять устройства в мощных гидроприводах.

Характеристика описывается квадратичной зависимостью разницы давлений от расхода. При высокой скорости жидкости местное сопротивление вызывает завихрения и деформацию потока. Управление движением происходит за счет изменения количества сопротивлений либо площади сечения квадратичного дросселя.

Классификация по типам регулирования и устройства

По типу управления гидродроссели могут быть управляемыми или неуправляемыми. В первом случае оператору доступно варьировать величину проходного канала; во втором – площадь рабочего сечения изменению не подлежит. На практике часто неуправляемый тип совмещают с другими регулирующими механизмами.

По типу конструкции гидродроссели делятся на устройства прямого действия и регуляторы скорости. Расход жидкости в дросселе прямого действия зависит от перепада давления на входе и выходе. В регуляторе скорости расход рабочей среды не зависит от внешних нагрузок и является постоянной величиной.

Регулируемые гидродроссели

Рассмотрим самые распространенные виды.

Щелевой. Широко применяется, в том числе на гидромоторах больших объемов. В проходном отверстии установлена полая пробка со щелью для потока. При повороте пробки изменяется площадь сечения. Таким образом, вязкость потока не оказывает влияния на пропускную способность. Недостатком является подверженность загрязнению.

Игольчатый. Запорно-регулирующий элемент имеет формы конуса. Дросселирующее отверстие короткое, омываемая поверхность малая. Как в предыдущем варианте, характеристика не сильно зависит от вязкости и температуры жидкости. Однако есть высокий риск засорения.

С продольной канавкой. Запорно-регулирующий элемент имеет срез, выполненный под углом, и прямоугольную или треугольную канавку. Взаимное расположение отверстия в гильзе и самого запирающего элемента определяет степень местного сопротивления. Площадь соприкосновения с жидкостью небольшая, щель узкая. Данный тип подходит для маломощных систем.

Формы гидродросселей

Простейшая конструкция напоминает по внешнему виду шайбу или комбинацию шайб. У таких дросселей, как правило, имеются заостренные кромки, предотвращающие загрязнение.

Более сложные и объёмные изделия (нелинейные) имеют квадратную форму. Для высокоскоростных и мощных потоков рекомендуется использовать одновременно комплект дросселей (пакетные гидродроссели). Такое решение минимизирует риски выхода из строя. Количество шайб определяет силу сопротивления. При расчете таких дросселей учитывается взаимное расположение шайб и удаленность отверстий друг от друга. Имеют значение также диаметры проходных отверстий.

Среди квадратичных дросселей с точки зрения расчетов наиболее простым является гидродроссель с золотниковым запорно-регулирующим элементом.

Применение дроссельного регулирования

Устройства используются для регуляции скорости движения потоков в гидродвигателях, гидромоторах. Однако для систем большой мощности применение мало эффективно.

В зависимости от конструкции регулятор устанавливается либо на входе в двигатель, либо на выходе (слив). Известны схемы с включением дросселя параллельно основному рабочему механизму.

Для ограничения давления в системе должен присутствовать предохранительный клапан.

Явление облитерации

В техническом смысле облитерация – это заращивание сечения отверстия в процессе эксплуатации. Для дросселя площадь рабочего сечения не может снижаться бесконечно. Существует нижняя граница, по достижении которой стабильность работы дросселя резко снижается.

Твердые включения, содержащиеся в рабочих средах, могут задерживаться материалом запирающих элементов, оседать в микротрещинах. Происходит постепенное накопление частиц. Если их размеры приближаются к габаритам щели, есть риск полного заращивания с утратой пропускной функции. Восстановление расхода произойдет при расширении рабочего окна.

Помимо механического загрязнения облитерацию может вызвать и адсорбция стенками дросселирующей щели поляризованных частиц жидкости. Молекулы со временем образуют слой толщиной до 10 мкм, влияя на местное сопротивление.

Площадь проходного сечения постепенно уменьшается. При небольших рабочих сечениях может произойти полная облитерация. Избавиться от наслоения частиц можно вращательными или поступательными движениями одной из поверхностей относительно другой. Разрушение адсорбированного слоя поляризованных частиц приведет к восстановлению необходимого расхода.

Для предотвращения адсорбции молекул в конструкцию вносят изменения, предусматривающие осцилляции или вращения рабочего тела дросселя. В результате проходное окно не засоряется и не задерживает поляризованные молекулы. Облитерация не происходит.

Когда необходим ремонт

В пространство между клапаном и корпусом гидродросселя попадают загрязняющие частицы из рабочих жидкостей. Это вызывает подклинивание клапана и создает нестабильность расхода потока. Для устранения неполадки необходимо разобрать гидродроссель, промыть все части, включая всю гидравлическую систему. После повторной сборки убедиться в восстановлении подвижности клапана. Перед запуском жидкость подлежит очистке от загрязнений.

Краткое описание гидродросселя марки ДКМ

Основное предназначение дросселей ДКМ – создание перепада давления в рабочем потоке на входе и выходе или регулирование расхода в прямом и обратном направлениях. Особенностью конструкции является наличие обратного клапана.

Рабочая жидкость – масла; рабочая температура от 20 до 50 °С; допустимый размер частиц в маслах 25 мкм.

Номинальное давление на входе: 32 МПа, максимальное – 35 МПа.

В зависимости от исполнения, номинальный расход рабочей жидкости составляет от 12,5 до 63 л/мин; перепад давления на обратном клапане – от 0,25 до 0,35.

Источник

Сайт Галдина Н.С.

3.4. Гидравлические дроссели и регуляторы потока

3.4. Гидравлические дроссели и регуляторы потока

Гиродроссель – регулирующий аппарат, устанавливающий определенную связь между перепадом давления на самом дросселе и расходом жидкости через него. Дроссели, представляющие собой гидравлические сопротивления, разделяют на регулируемые и нерегулируемые.

Регулируемые дроссели применяются, например, в гидроприводах для регулирования скорости движения выходных звеньев гидродвигателей.

По принципу действия различают следующие типы дросселей: дроссель вязкостного сопротивления, потери давления в котором определяется сопротивлением потоку жидкости в канале большой длины; дроссель вихревого сопротивления, потери давления в котором определяется в основном деформацией потока жидкости и вихреобразованием в канале малой длины.

Дроссели первого типа получили название линейных, так как потери давления в них обусловлены трением при ламинарном режиме течения жидкости, т.е. потери давления является практически линейной функцией скорости течения жидкости.

Поскольку потери давления в таком дросселе изменяется прямо пропорционально вязкости жидкости, гидравлическая характеристика его D дроссельный пакет что это зависит от температуры. Линейные дроссели применимы только при малых скоростях течения жидкости, т.е. при малых значениях потерь давления (обычно меньше 0,3 МПа) и в условиях достаточно стабильной температуры.

В дросселях второго типа изменения давления происходит практически пропорционально квадрату скорости потока жидкости, ввиду чего такой дроссель называют квадратичным. Характеристика такого дросселя практически не зависит от вязкости жидкости.

На рис. 3.19. показана конструктивная схема линейного дросселя, в котором гидравлическое сопротивление регулируется изменением длины дроссельного канала однозаходного винта путем ввинчивания или вывинчивания винта 2 в корпусе 1.

дроссельный пакет что это

Рис. 3. 19. Схема линейного дросселя:

Дроссельный канал можно рассматривать как трубку прямоугольного или треугольного, в зависимости от профиля резьбы, сечения и расчет потерь давления в первом приближении можно вести по общим формулам гидравлики для расчета путевых потерь в трубопроводах.

На рис. 3.20. показаны конструктивные схемы квадратичных (турбулентных) дросселей. Широко применяются в гидроавтоматике простые дроссели в виде тонкой шайбы с круглым отверстием и острыми кромками (рис. 3.20, а). Дросселирующие свойства отверстий в таких шайбах обусловлены в основном потерями энергии при внезапном сужении и расширении потока жидкости.

При разработке гидросистем часто требуется дроссель, обладающий высоким гидравлическим сопротивлением (большим перепадом давления) и стабильной расходной характеристикой. Обеспечить подобные требования одной дроссельной шайбой не представляется возможным, поскольку размер ее отверстия при этом может быть столь малым, что возможно засорение его загрязнениями жидкости.

Поэтому применяются многоступенчатые дроссели из нескольких последовательно расположенных дроссельных шайб (рис. 3.20, б), принцип действия которых также основан на многократном сужении и расширении потока жидкости.

дроссельный пакет что это

Рис. 3.20. Схемы квадратичных (турбулентных) дросселей:

а ) дроссельная шайба; б) пакет шайб; в) золотниковый дроссель;

На рис. 3.20, в показана конструктивная схема регулируемого золотникового дросселя, в котором рабочее проходное сечение создается кромками расточки корпуса 1 и золотника 2. Для изменения площади рабочего проходного сечения дросселя необходимо перемещать золотник в осевом направлении.

В крановом дросселе (рис. 3.20, г) рабочее проходное сечение создается между расточкой корпуса 1 и узкой щелью, выполненной в полом кране 2. Для изменения площади рабочего проходного сечения дросселя необходимо повернуть кран в ту или иную сторону.

Широкое применение в регулирующей гидроаппаратуре в системах гидроавтоматики и следящем гидроприводе находят регулируемые гидравлические дроссели типа сопло-заслонка. Регулируемые дроссели сопло-заслонка представляют собой устройства, состоящие из сопла и плоской заслонки, которая перемещается вдоль оси сопла и изменяет площадь кольцевой щели между торцом сопла и заслонкой, что приводит к изменению гидравлического сопротивления дросселя.

Расход жидкости через квадратичный дроссель определяется по формуле

дроссельный пакет что это, (3.10)

где дроссельный пакет что это – расход жидкости, м 3 /с;

m – коэффициент расхода, m = 0,6…0,7;

дроссельный пакет что это – площадь рабочего проходного сечения дросселя м 2 ;

дроссельный пакет что это – перепад давления, Па, дроссельный пакет что это, здесь дроссельный пакет что это – давление на входе в дроссель, дроссельный пакет что это – давление на выходе из дросселя;

Регулятором потока называется регулирующий аппарат, предназначенный для поддержания заданного значения расхода вне зависимости от перепада давлений в подводимом и отводимом потоках рабочей жидкости.

Источник

Регулирование гидропривода

Скорость движения исполнительных органов объемного гидропривода зависит от расхода жидкости, поступающего в рабочую камеру, и от объема этой камеры, поэтому возможности регулирования скорости гидроприрвода основаны на различных способах изменения расхода, либо на изменении объема рабочей камеры. Рассмотрим подробнее каждый из возможных способов регулирования скорости движения исполнительных механизмов гидравлического привода.

Объемное регулирование

Регулирование рабочего объема насоса

Подачу объемного насоса можно вычислить по формуле:

Получается, что изменения объем рабочей камеры насоса, можно регулировать расход жидкости, подаваемой в напорный трубопровод при постоянной частоте вращения.

дроссельный пакет что это

Насосы, конструкция которых позволяет изменять объем рабочей камеры называют регулируемыми. Наибольшее распространение получили регулируемые пластинчатые и аксиально-поршневые насосы.

Конструкция регулируемых машин значительно сложнее чем нерегулируемых, а значит регулируемые насосы значительно дороже. Высокая стоимость является одним из главных недостатков объемного регулирования гидропривода.

Объемное регулирование насоса часто применяется для изменения скорости движения гидроцилиндров.

Регулирование рабочего объема гидромотора

Скорость вращения вала гидромотора можно вычислить, используя зависимость:

Используя данную зависимость можно сделать вывод, что изменяя объем рабочей камеры гидромотора можно регулировать скорость вращения вала.

дроссельный пакет что это

Регулируемым называют гидромотор, в конструкции которого предусмотрена возможность изменения объема рабочей камеры. Наиболее часто используются регулируемые аксиально-поршневые моторы, существуют конструкции регулируемых пластинчатых и радиально-поршневых гидромоторов.

дроссельный пакет что это

Достаточно часто используется схема объемного регулирования с одновременным использованием регулируемых насоса и гидромотора. Наибоольшее распространение получили регулируемые аксиально-поршневые моторы.

Преимущества объемного регулирования

Недостатки объемного регулирования

Дроссельное регулирование

Суть дроссельного регулирования заключаются в отводе части жидкости, подаваемой насосом. Подача насоса при дроссельном регулировании делится на два потока.

Изменяя соотношение этих расходов можно менять скорость движения исполнительных механизмов.

Рассмотрим подробнее каждый из этих способов регулирования.

Последовательное регулирование с установкой дросселя в линии нагнетания

Дроссель или регулятор расхода при данном способе регулирования устанавливается в линию нагнетания насоса, он необходим для создания необходимого перепада давления. Сброс части жидкости осуществляется через предохранительный клапан.

Рассмотрим принцип работы схемы с последовательным дроссельным регулированием.

дроссельный пакет что это

При полном открытии дросселя весь поток жидкости направляется к гидроцилиндру, скорость его движения при переключении распределителя будет максимальной.

При уменьшении проходного сечения дросселя давление перед ним будет увеличиваться. При достижении давления начала открытия предохранительного клапана, часть жидкость через него будет отправляться на слив. Скорость перемещения штока гидроцилиндра будет уменьшаться.

При дальнейшем закрытии дросселя давление перед ним будет расти, а значит предохранительный клапан будет открываться сильнее отправляя большее количество жидкости на слив. Что позволит уменьшать скорость движения штока цилиндра.

Данный способ регулирования характеризуется простотой реализации и относительной дешевизной органов регулирования. Однако дросселирование обуславливает большие потери энергии, а значит низкий КПД и большое тепловыделение. Причем при последовательном регулировании, нагретая на дросселе жидкость будет поступать в полость исполнительного гидродвигателя.

Последовательное регулирование с установкой дросселя в линии слива

Дроссель может устанавливаться не только в линии нагнетания насоса, но и в линии слива гидродвигателя, такую схему называют последовательным регулированием гидравлического привода с установкой дросселя в линии слива.

дроссельный пакет что это

В результате уменьшения проходного сечения дросселя давление в линии нагнетания будет возрастать, когда оно достигнет величины достаточной для открытия предохранительного клапана часть жидкости через него будет отправлена на слив. Получается что при дроссельном регулировании гидродвигатель постоянно будет находится под нагрузкой за счет противодавления на сливе, что может негативно сказаться на его ресурсе.

При установке дросселя в линии слива нагретая на гидравлическом сопротивлении жидкость поступает не к гидродвигателю, как в случае с установкой дросселя в линию нагнетания, а в накопительный бак, где накопленное тепло рассеивается.

Параллельное дроссельное регулирование скорости гидропривода

Схема параллельного регулирования с помощью дросселя показана на рисунке.

дроссельный пакет что это

Дроссель установлен параллельно гидроцилиндру. При увеличении открытия дросселя поток жидкости, проходящий через него на слив будет увеличиваться, а поток жидкости направляемый к гидродвигателю будет уменьшаться. Изменяя открытие дросселя можно регулировать соотношение расходов этих потоков. Выделяемое при дросселировании тепло с помощью жидкости отводится в бак.

Достоинства дроссельного регулирования гидравлического привода

Недостатки дроссельного регулирования

Частотное регулирование скорости гидропривода

В том случае, если для вращения вала насоса используется электродвигатель, для изменения подачи можно применить частотное регулирование.

Подача насоса определяется его рабочим объемом и частотой вращения вала, изменяя частоту можно влиять на подачу насоса.

дроссельный пакет что это

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *