гфлопс что это в смартфоне
Почему даже на самых мощных смартфонах игры хуже, чем на ПК и консолях?
Каждый год производители мобильников радуют нас новыми цифрами производительности. Apple хвастается крутыми графиками и постоянными обновлениями графических API (инструментов для работы с «железом» смартфонов) – мол, теперь в 100500 раз быстрее, чем раньше. Так куда же «сливают» все эти гигафлопсы? В какую чёрную дыру они улетают, если даже новейшие мобильные игры на самых мощных смартфонах всё равно отстают от игр десятилетней давности – не только по геймплею, но и по графике?
Сравните, например, консольную Burnout: Paradise 2008 года с мобильной Asphalt 9 2018-го. Burnout на Xbox 360 и PlayStation 3 работала в разрешении 720p с частотой 60 FPS – и это была гонка в открытом мире! Там были реальные и вполне детальные отражения на кузове автомобиля и в целом графика до сих пор смотрится свежо (если б не старомодные эффекты пост-процессинга).
Почему же такое происходит? Почему несмотря на все достижения технического прогресса мобильные игры остаются буквально на дне индустрии? Этому есть несколько причин. Разделим их на две категории: технические и экономические.
Технические причины
1. Флопсы флопсам рознь
Когда мы говорим о производительности такого-то чипа в количестве операций в секунду, то мы не учитываем, а чем, собственно, этот чип вообще будет занят и как обрабатывать поступающую информацию. Разработчики игр для консолей могут иметь прямой доступ к любому железу (почти) и нагружать его как угодно, при этом операционная система самой консоли отдаёт играм максимальный приоритет, да и в целом сама по себе ОС достаточно лёгкая. Грубо говоря – процессор и графика консоли заняты исключительно игрой и вся их производительность (почти) работает на игру.
У мобильников (как и у персональных компьютеров, кстати) забот гораздо больше. И прямого доступа к «железу», считай, нет, и операционные системы тяжёлые, да и приоритеты совсем другие. Вы же не хотите пропустить важный звонок только из-за игрушки? Хотя, признаемся, бывает и такое желание. Но всё-таки, ни Android, ни iOS себе такого позволить не могут. Да и фоновых процессов там куча.
2. Тротлинг и проблема охлаждения
Предыдущий пункт очевиден многим, мы его упомянули только потому, что не упомянуть его всё равно нельзя. Но гораздо меньше людей задумываются о тротлинге – то есть, об уменьшении быстродействия процессора (за счёт пропуска тактов) в случае перегрева.
Snapdragon 810, конечно, вопиющий случай, но по нему наглядно видны проблемы со стабильностью работы процессоров в смартфонах (источник: Ars Technica)
Взять ту же Nintendo Switch – по факту это просто планшет на Nvidia Tegra X1. Такой же, как Shield TV, не считая геймпада. В стационарном режиме Tegra X1 в Switch может работать на частоте 768 МГц, тогда как в портативном – либо 302,7 МГц, либо 368 МГц. Проблема в том, что Switch не может позволить себе замедлиться ни при каких условиях. Ни на один мегагерц. Собственно, именно для этого в Switch понижается тактовая частота Tegra X1 (номинальная её частота – 1000 Мгц) не только в портативном режиме, но даже в режиме док-станции. Потому, что консоль должна быть рассчитана (и она рассчитана) на постоянную работу под максимальной нагрузкой со стабильной производительностью. А мобильник может спустя 10 минут игры в новомодную игрушку взять и срезать частоту.
А здесь Xiaomi Mi 8 работает в полную силу только с искусственным охлаждением (в морозилке, например). Источник: GSMArena
Даже если будут тормоза – мобильной ОС всё равно, лишь бы не сгореть. Тем более, что размеры мобильников не позволяют устанавливать туда активное охлаждение. Да и как вы представляете себе мобильник с вентиляторами? А вот в той же Switch вентилятор есть. Что уж говорить про стационарные консоли!
3. Фрагментированность
Конечно, даже несмотря на оба фактора, перечисленных выше, можно постараться и выжать все соки из топового железа – хотя бы на 5 минут геймплея. Проблема в том, что такого железа «на руках» очень мало, и ту же графику неизменно придётся понижать для обладателей средних девайсов. В итоге такие затраты сил, времени и денег уйдут практически впустую.
Если делать игры без учёта маломощных смартфонов, много денег не заработаешь
Помните, на заре появления Nvidia Tegra было немало эксклюзивных игр именно для этой SoC («процессора», как говорят в народе)? Tegra на то время на аппаратном уровне поддерживала множество эффектов (например, частицы воды). Но, во-первых, конкуренты быстро догнали Tegra, а во-вторых, пока это не случилось, в эти игры играли единицы. Ну и стоит ли оно того?
4. Неудобное управление
Одна из главных причин, почему нормальные игры на мобильниках невозможны – неудобное управление. Прежде всего, давайте признаем, что сенсорный экран подходит лишь для двух типов игр – point-&-click (стратегии, игры одной кнопки, квесты «найди предмет в этой комнате») и игр с физикой и управлением гироскопом/акселерометром (катай шарик по полю). Всё. В лучшем случае можно придумать что-то вроде аркадных гонок, где управляешь наклоном смартфона и нажимаешь пару педалей – это максимум, что можно выжать из смартфонного управления.
Наэкранные же кнопки не только неудобны, они ещё и сильно сужают обзор.
Конечно, можно купить геймпад. Но, во-первых, какой? С консолями геймпады поставляются в комплекте, и любой разработчик игры может точно быть уверен, какой это геймпад, сколько там кнопок (и каких), как они расположены. А вот для мобильников геймпады далеко не универсальны по количеству и расположению кнопок.
Но главная проблема – инпут-лаг (отклик на нажатие), особенно у Android-смартфонов. При подключении обычного Bluetooth-геймпада инпут-лаг составляет 120-150 мс (причём, чаще именно 150), что делает игру крайне затруднительной. На консолях уже 100 мс считается высоким инпут-лагом, а тут 120 – редко достижимый минимум.
Думаете, проводные геймпады решают проблему? Вовсе нет. Автор этого текста тестировал модуль геймпада для Moto Z2 Play, который подключается к смартфону с помощью контактной площадки. Так вот – с этим геймпадом инпут-лаг возрастал до 200 мс! Причём, с этим же телефоном простой китайский геймпад выдавал 120-150 мс! (К слову, это не невидаль какая-то – у геймпада PlayStation 4 тоже по проводному подключению инпут-лаг внезапно выше, чем по Bluetooth).
Конечно, в некоторые игры можно играть и так. Медленные, неторопливые. Но рассчитывать на нормальные слэшеры, файтинги и шутеры на мобилках не приходится. Разработчик не может позволить себе «наказывать» игрока за медленную реакцию, если имеется такой дикий лаг в управлении вкупе с общим дискомфортом. Вообще, высокий инпут лаг – проблема Android, там даже с реакцией на сам экран не всё гладко.
Экономические причины
В экономических причинах всё гораздо интереснее. Прежде всего, потому, что здесь уже речь не столько о том, почему «графона не завезли», а о том, почему сами игры – плохие.
1. 100 рублей – дорого
Одна из главных причин – разработка хорошей игры стоит дорого, и это касается не только графики. Но владельцы мобильников не привыкли столько платить. Когда Doom только вышел на PlayStation 4 и Xbox One, он стоил 3999 рублей. И его покупали! Когда цену на Xbox One на постоянной основе скинули до 849 рублей – его купили даже те, кому эта игра не особо нужна. Потому что для консольщика 849 рублей – это копейки, огромная скидка.
Сравнение производительности современных смартфонов и компьютеров
Ни для кого не секрет, что за последние 10 лет телефоны сделали качественный скачок — если тогда они воспринимались в основном как звонилки, с крайне урезанным браузером и почти без возможности проигрывать видео, то сейчас это полноценные мультимедийные устройства с нормальными браузерами и плеерами, пакетом MS Office, играми, оснащенные камерами, способными снимать 4К видео — в общем, казалось бы, это полноценный ПК в кармане.
Это же мнение активно развивают и компании-производители: Apple продвигает iPad как замену ПК, Microsoft и Samsung представили док-станции, с помощью которых можно превратить смартфон в рабочее место. И поэтому у многих может сложиться впечатление, что по производительности смартфоны уже ничуть не хуже ПК (ну или хотя бы ноутбуков). Однако, забегая вперед — это далеко не так.
Разумеется, возникает вопрос — как сравнить производительность смартфонов, построенных на ARM-процессорах, и ПК, построенных на x86? Конечно, есть кроссплатформенные тесты типа GeekBench, однако их проблема в том, что их результаты крайне сильно зависят от оптимизации бенчмарка под ту или иную архитектуру или даже процессор — к примеру, GeekBench не видит кэш L3 у процессоров Apple, а ведь он достаточно серьезно влияет на скорость вычисления. Поэтому нам нужен бенчмарк, который использует «понятные» всем процессорам команды, которые никак не зависят от системы — и на эту роль хорошо подходит Linpack, который меряет FLOPS.
Что же такое FLOPS? Это единица измерения производительности устройства, показывающая, сколько операций с плавающей запятой в секунду оно может сделать. Операции с плавающей запятой происходят «внутри» процессора и никак не зависят от системы, а только от быстродействия самого процессора. И второй плюс — в отличие от высокоуровневых бенчмарков, тестирующих отдельно процессор и отдельно видеокарту, никто не мешает вычислить производительность и того, и другого во FLOPS.
Увы, нормального Linpack под iOS я не нашел (есть один, но он не поддерживает х64-вычисления, что, разумеется, скажется на производительности). А вот под Android он есть, и поддерживает х64 — можно его бесплатно скачать в Google Play. Для тестов был взят практически топовый по современным меркам Snapdragon 820, и его результат — порядка 2.7 GFLOPS: 
Тут, разумеется, возникает вопрос — это много или мало? Увы — это мало: к примеру, Intel Core i3-7100U, низковольтный современный процессор от Intel, набирает порядка 40 GFLOPS. Сравнимый с Snapdragon 820 результат (3.2 GFLOPS) набрал Pentium 4 на 3.4 ГГц:
То есть топовые смартфоны имеют тот же уровень производительности, что и топовые ПК 2004-2005 годов. Отсюда опять же возникает вопрос: почему на таком слабом по современным меркам процессоре Android работает вполне себе шустро? Тут все просто — Android изначально оптимизировали под слабые устройства, и поэтому никаких проблем с быстродействием нет. Ровно также на Pentium 4 летала Windows XP — эта ОС могла работать на процессорах с частотой в 300 МГц, то есть на порядок ниже. Это же касается и мобильных браузеров — они работают в масштабе 1:2, а то и 1:3 — то есть реальное разрешение в браузере будет не 1920х1080, а 640х360 — поэтому опять же нет никаких тормозов.
Теперь давайте на минутку представим, что в телефоне действительно стоит Pentium 4 (вообще говоря — предположение вполне себе верное: если программа под ПК требует процессор определенной производительности, то оптимизированная под мобильные ОС версия программы с тем же функционалом вряд ли будет иметь меньшие системные требования). Что из современного софта мы сможем запустить?
Второй миф, который запустила Nvidia больше 5 лет назад на презентации своего процессора Tegra 2 — это игры «консольного уровня». Что самое забавное — с тех пор каждый производитель счел своим долгом на презентациях говорить, что вот сейчас мы точно достигли уровня консолей. Только вот вопрос — каких?
В одном из самых мощных смартфонов современности, Apple iPhone 6s, стоит видеочип PowerVR GT 7600, производительность которого, если судить по сайту AnandTech, составляет 115 GFLOPS:
В iPhone 7 стоит чип GT 7600 PLUS, который является разогнанной версией 7600, то есть его производительность составляет 130-140 GFLOPS. Ближайшая из относительно современных видеокарт с такой же производительностью — Nvidia GT 610:
Чтобы было понятнее — это видеокарта-затычка пятилетней давности, охлаждаемая пассивно и стоящая на данные момент меньше 2 тысяч рублей. От середнячка предыдущего поколения видеокарт Nvidia — GTX 960 — она отстает в 15 раз, а производительность в современных играх аховая: GTA 5 идет в 800х600 на минимальных настройках с 25-30 fps, Witcher 3 в 1024х768 опять же на минимальной графике выдает 7-10 fps. Консоли предыдущего поколения, PlayStation 3 и Xbox 360, выдают порядка 220-250 GFLOPS, то есть они вдвое мощнее графического процессора в iPhone 7! В итоге получается, что топовые мобильные видеочипы имеют производительность между PlayStation 2 и 3, то есть уровень видеокарт 2004-2005 года. Поэтому предел мечтаний — игры того времени, что мы и видим: под мобильные ОС с хорошей графикой были портированы GTA вплоть до San Andreas (2004), Half-Life 2 (2004), Titan Quest (2006).
Что же в итоге? А в итоге топовые смартфоны и планшеты имеют уровень производительности компьютеров 2004-2005 года, поэтому говорить о полноценной работе и играх на них просто смешно: их предел это мультимедиа и серфинг в интернете, а все рассказы производителей о том, что планшеты и смартфоны заменят ПК — увы, просто байки.
GFLOPS или по поводу производительности GPU
Практически все юзеры, которые понимают что-то в SoC вступают в кровопролитные споры о том, чей смартфон, процессор, GPU круче. Собственно, мощность GPU измеряют в FLOPS- специальной единице, которая показывает, сколько операций с плавающей запятой может выполнить GPU(и не только) в секунду. Кому интересно, прошу под кат!
Начнем с самого популярного GPU- Mali-400. Этот GPU завоевал немалую славу за счет своей производительности и энергопотребления. Одновременно мощный и экономный по отношению к заряду аккумулятора чип использовался во многих процессорах- от NovaThor U8500 до Exynos 4412. Существует множество разновидностей этого GPU, которые отличаются кол-вом ядер. Ниже привожу несколько сматфонов, в которые внедрен этот GPU и кол-во GFLOPS.
Samsung Galaxy Ace 2- Mali-400MP- 275MHz- 2.48Gflops
Samsung Galaxy S3- Mali-400MP4- 533MHz- 19.2Gflops
Довольно большая разница, не правда ли?
Также развожу миф о том, чем больше частота, тем мощнее чип
Mali-450MP4- 700MHz, который стоит в MT6592, и который, по заверениям нескольких пользователей Трешбокса должен побить даже ещё не вышедший Adreno 420. Результат- 41.8Gflops. Довольно большой шаг вперед по сравнению с Mali-400MP4, но Adreno 330- 450MHz набирает целых 129.6Gflops, что нереально много. Причем его частота ниже, чем на Mali-450MP4 на 250MHz. Для сравнения топовый PowerVR G6430- 450MHz, который стоит в IPhone 5S и IPad Air набирает 115.2Gflops.Самый мощный Mali-628MP6- 533MHz, который стоит в Octa версии Samsung Galaxy Note 3 набирает 102.4Gflops.
Также не стоит забывать Tegra 4 и Tegra 4i. GeForce ULP x72, который стоит в Tegra 4 набирает 96.8Gflops, а его LTE-брат с GeForce ULP x60- 79.2
Но тут происходит самое интересное, ведь Adreno 330 имеет и 550MHz версию(которую в скором будущем можно будет получить при помощи кастомных ядер) и эта самая разогнанная версия набирает целых 158.4Gflops! Это рекорд.
Давайте посмотрим и на более старые GPU, такие как Adreno 320, Adreno 225, GeForce ULP x12 и PowerVR SGX544MP3 и SGX554MP4, также не стоит забывать и о простом SGX544MP, который стоит в сверхпопулярном чипе MT6589.
Также, давайте рассмотрим видео процессоры Adreno 203, Adreno 205, Adreno 200, Adreno 220 и Adreno 305.Первые 4 видео процессора набирают следующие оценки: Adreno 200- 3.92Gflops при частоте 245MHz, Adreno 203- 7.84Gflops при той-же частоте 245MHz. Как видим: двукратный результат при одинаковой частоте.
Adreno 205- продолжение 203-го. Он набирает 8.5Gflops, что не очень много, но следующий GPU, под названием Adreno 220 ломает стереотипы не самых топовых GPU: невероятные 18Gflops- уровень Mali-400MP4 533MHz, который стоит в топовом Samsung Galaxy S3. Теперь рассмотрим Adreno 305, который является упрощённой версией Adreno 320. Данный GPU стоит в таких процессорах, как Snapdragon S4 Plus и Snapdragon 400. Так вот, данный ускоритель набирает 21.6Gflops при частоте 450MHz.
Adreno 320 разделяется на два разряда: который стоит в S4 Pro, и который стоит в Snapdragon 600. Отличаются они кол-вом блоков: если у S4 Pro версии их 64, то у 600 версии их 96. Adreno 320 S4 Pro набирает 57Gflops, а его S600 версия целых 97.2 при частоте 450MHz. Это даже больше, чем GeForce ULP x72, поэтому в Snapdragon 600 1.9GHz более мощный GPU, чем в Tegra 4. Шокирующий результат.
Давайте посмотрим на Adreno 225. При частоте в 400MHz он набирает 25.6Gflops. Для сравнения GeForce ULP x12, который стоит в Tegra 3 набирает 12.5Gflops при частоте 520MHz. Adreno 225 мощнее чем GeForce ULP x12… Мда… Но если по делу, то у GeForce ULP x12 производительность на уровне… На 4.5Gflops ниже, чем на Adreno 220…
Теперь перейдем к PowerVR SGX544MP3, который стоит в Exynos 5410 или, проще говоря в Samsung Galaxy S4. Его производительность составляет 51.1Gflops. Не самый мощный. Более топовый SGX554MP4, который послужил игровой основой для IPad 4 выдает 76.8Gflops. Значительно больше.
Но как только я узнал производительность SGX544MP, который стоит в MT6589 и MT6589T я… неважно. У MT6589 версия с частотой 286MHz. Он выдает всего 9.2Gflops. Это очень мало, но всеравно больше, чем у его младшего брата MT6589M. У него граф. ускоритель работает на частоте всего 156MHz. Честно говоря мне не хочется говорить о этом процессоре, но придется. Так вот, он выдает всего 4.9Gflops. Это немногим лучше, чем на Adreno 200. Турбированный MT6589T владеет ускорителем с частотой 357MHz и это дает ему 11.4Gflops.
А теперь по поводу консолей. Многими любимый PSP выдает всего 2.6Gflops. Вы помните невероятную графику PSP игр? А то, как они плавно шли на нем? Adreno 330 более чем в 50 раз мощнее, чем PSP. Но 50-кратного прироста не ощущается. PSVita- это серьезное развитие железа. Он обладает PowerVR SGX543MP4+ и это дает внушительные 51.2Gflops.
А теперь по поводу PS и Xbox. PS3 обладает производительностью в 228.8Gflops и я верю, что следующее поколение GPU будет мощнее, чем любимая многими приставка, но до уровня PS4, который набирает 1840Gflops еще, как раком до Китая. Кстати, сверхмощная видеокарта Nvidia GeForce GTX Titan набирает 4500Gflops, а новый GTX 780Ti примерно 4800Gflops. До компа, как до Луны 😀
О, забыл о видео ускорителе Vivante GC6400, который работает на частоте 800MHz. Этот видеоускоритель- единственный конкурент адскому Adreno 330: его производительность составляет 128. Gflops, что всего на 1.6Gflops меньше, чем у Adreno 330, но мы знаем, что разработчики не сильно хотят оптимизировать игры под этот редкий ускоритель. Я, например, не знаю ни одного устройства с данным ускорителем. Кто знает: напишите, пожалуйста, в комментариях
Если составить рейтинг мобильных GPU, то получается следующий список:
Но не стоит забывать об энергопотреблении, ведь если судить именно по нему, то рейтинг немного поменяется 🙂
Android Шаг за Шагом: Видеоускорители и все что с ними связано
Многие из вас качали кэш к играм, или смотрели характеристики какого-либо устройства. Каждый видел, что были какие-то непонятные слова вроде Tegra, Adreno, Mali, PowerVR. Давайте узнаем, что же это такое.
Содержание
Все выше перечисленное — видеоускорители. Видеоускоритель — это одна из главный частей в SoC (System on the Chip), сокращенно GPU. GPU, или Graphic Processing Unit — это такой чип, интегрированный в CPU, и он отвечает за 2D и 3D графику. И их производительность измеряется в Flops. CPU, или Central Processing Unit, одним словом процессор.
Рассмотрим виды самых популярных GPU. Их 4 вида:
Также есть менее популярные GPU, но рассмотрим их в следующий раз.
Tegra (GeForce ULP)
Само вообще появление такого SoC как Tegra началось в 2007 года, из-за приобретения компанией NVIDIA компанию PortalPlayer. В то время процессор не пользовался популярностью, так как мощь была не конкурентоспособной, и сама Tegra использовалась в плеерах, смартфонах под Windows Mobile и Windows CE.
Все изменилось после ставки NVIDIA на новую операционную систему от Google — Android. Так в 2010 появился двухъядерный Tegra 2 для планшетов, а в 2011 для смартфонов. Потом появился Tegra 3 и дальше Tegra 4, 4i, К1 и Х1.
Сама эволюция в плане графических возможностей началась с Tegra 2. В GPU процессора от NVIDIA было 8 графических ядер, полная поддержка Direct3D Mobile и OpenGL ES 2.0 и производительность в 6.7 GFLOPS при 400 мГц.
А в GPU Tegra 3 уже 12 графических ядер, 12.4 GFLOPS при частоте 520 мГц.
Уже в 2012 были в играх эксклюзивы для Tegra, к примеру, улучшенная графика, спецэффекты и прорисовка, а также, оптимизация. Довольно мало людей жаловались на нехватку производительности.
Я уже молчу о Tegra 4 и 4i c 72/60 графическими ядрами с поддержкой OpenGL ES 3.0 и 96.8 GFLOPS с 72 ядрами при частоте 672 мГц, и 74.8 GFLOPS с 60 ядрами при 660 мГц.
Речь не идет о К1 с 192 графическими ядрами, поддержкой Direct X 12, OpenGL ES 3.1 и производительностью в 360 GFLOPS при частоте 850 мГц.
Не будем говорить о Х1 с производительностью в 1 TFLOPS, с 256 графическими ядрами при частоте 1 Ггц. Сразу можно сказать, что мобильный рынок развивается.
Но куда такая мощь без должной оптимизации? Именно сейчас NVIDIA занимается этим.
Она запускает разные экслюзивы, такие как Portal и Half-Life 2 и так далее. Эти все приложения находятся в специальном маркете для Tegra — Tegrazone.
В общем, если вы любите играть, то брать Tegra.
Adreno от Qualcomm (Snapdragon SoC)
Полноценное появление Adreno появилось после запуска линейки SoC Snapdragon компанией Qualcomm в 2009 году.
Первым мобильным устройством на Snapdragon был Toshiba TG01 с Adreno 130, а далее HTC HD2.
P.S Мощь чипсетов можно сравнить с игровыми приставками.
После развития Android и Windows Phone, само развитие Snapdragon пошло резко вверх. За 6 лет уже произведено 5 поколений SoC Snapdragon. S1, S2, S3, S4 и 200/400/600/800.
За эти пять поколений было запущено множество видов процессоров, что можно запутаться. Для этого можно посмотреть таблицу ниже, где я собрал популярные на данный момент виды GPU и их процессоры.
А вот список производительности Adreno в GFLOPS (Чем больше, тем лучше):
Чипсеты Snapdragon используются во многих устройствах, особенно в флагманах. Об оптимизации в играх можно и не волноваться из-за популярности GPU, а последние версии поддерживают OpenGL ES 3.1 и Direct X 11.
Mali от ARM
Mali — это GPU от ARM. Делится на 4 поколений: Utgard, Midgard 1/2/3.
Первый GPU был Mali-55 с поддержкой OpenGL ES 1.1 и с одним графическим ядром, который признан самым маленьким графическим чипом, появился впервые в LG Renoir, где Mali-55 используется только для оптимизации работы интерфейса.
Второй опыт в создании GPU был Mali-200. Тогда он уже поддерживал OpenGL ES 2.0 с 1 графическим ядром при частоте 275 мГц.
Третий опыт был на Mali-300. Он мог воспроизводить графику уровня PlayStation Portable, частота GPU была 395 мГц.
Четвертый опыт в создании GPU был революционным — Mali-400 — продолжение Mali-300, но с поддержкой многоядерности до 4 графических ядер, в следствии чего производительность увеличивается до 4-ех раз. Частота в 395-533 мГц, производительность в 2.5 до 19 GFLOPS. Популярен среди смартфонов и планшетов 2013.
Также есть Mali-450. Это тот же самый 400, но производительность увеличена в два раза. Может иметь до 8 графических ядер, частоту от 375 до 700 мГц и производительность в 30-60 GFLOPS.
Mali-Т760 — самый мощный GPU среди Mali, с поддержкой до 16 графических ядер, частота 685 мГц и 376 GFLOPS! Поддерживает OpenGL ES 3.1, OpenCL1.2, OpenVG 1.1 и Direct X 11.1.
Самые популярные GPU Mali вы можете рассмотреть в данной таблице:
Более 35-40% устройств работают с Mali. Поэтому можете не ждать таковых фризов и лагов в играх.
Обычно Mali можно встретить в чипсетах Exynos, MediaTek, AllWinner, Rockchip.
Power VR от Imagination Technologies
GPU созданная от Imagination Technologies, еще в далеких 90-ых. Была даже в то время на равне с AMD и NVIDIA, но из-за быстрых развитий других компаний, отстала от них. После чего они перешли на мобильную и бытовую технику.
Пропустим все прелюдии и начнем сразу с GPU:
Видов GPU так много, что я просто покажу вам список по производительности GFLOPS (Чем больше, тем мощнее):
Сами графические чипы можно встретить в процессорах от Apple, MTK, AllWinner, Intel, Samsung.
Мы рассмотрели 4 вида популярных графических видеоускорителей от 4 разных производителей. У каждого свои минусы, у каждого свои плюсы. Также вы узнали что такое GPU, CPU, и по немногу историю каждого видеоускорителя.
Надеюсь, вам чем-то поможет данная статья, и удачи в ваших приключениях!
P.S Спасибо моему другу Timblaer за оформленные таблицы и спасибо за идею про видеоускорители пользователю Artyoms.



















