грп для чего нужен
Гидравлический разрыв пласта (ГРП)
Основная технологическая составляющая метода Фрекинга – один из способов интенсификации работы нефтяных и газовых скважин
ИА Neftegaz.RU. Гидравлический разрыв пласта (ГРП, основная технологическая составляющая метода Фрекинга, Hydraulic fracturing или fracking) – один из способов интенсификации работы нефтяных и газовых скважин и увеличения приемистости нагнетательных скважин.
Технология ГРП
Технология ГРП заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида (природный газ, вода, конденсат, нефть или их смесь) к забою скважины.
В однородных по толщине пластах обычно создается 1 трещина значительной длины.
На многопластовых или большой толщины залежах, представленных низкопроницаемыми геологическими формациями, осуществляется, как правило, поинтервальный ГРП.
Рабочая жидкость, применяемая для ГРП, нагнетается в пласт через колонну труб.
Если давление разрыва превышает допустимое рабочее давление для эксплуатационной колонны и устьевой запорной арматуры, то технологи рекомендуют вместо запорной арматуры установить специальную головку, а на нижнем конце НКТ установить пакер, выше которого межтрубное пространство заполнить жидкостью с большей плотностью.
В качестве рабочей жидкости ГРП обычно применяют растворы с использованием высокомолекулярных полимеров (для снижения потерь давления) на водной основе, в том числе:
В качестве расклинивающего материала используются проппанты, кварцевый песок и другие материалы фракции 0,5-1,5 мм.
Эффективность ГРП повышается при одновременной гидропескоструйной или прострелочной перфорации скважины, однако при поинтервальных ГРП при этом необходимо изолировать обработанный участок пласта с помощью пакера и т. д.
Экологическая опасность технологии ГРП
Технология гидравлического разрыва пласта в российских условиях
Не будем обещать, что в ближайшие 15 минут вы точно будете специалистом по гидроразрыву пластов, зато точно узнаете как 33 человека и 22 машины на песчаном пустыре среди болот закачают на 3 км под землю 3 бассейна Сибиряк воды и 9 железнодорожных (Ж/Д) вагонов песка или проппанта всего лишь за 5 часов.
Здесь самое главное слово «Зачем», ведь там под землей и так этого добра достаточно.
Этот песок в белых мешках и есть проппант, сейчас его поднимают кранами на 10-метровую высоту, чтобы потом так вколотить его на 3 км под землю, чтобы он там и остался навсегда.
В общем, это такие похороны проппанта, которые дают скважине новую жизнь.
Сейчас легкой нефти практически нет, все месторождения, которые сейчас разрабатываются, либо на стадии завершающейся, либо это новые месторождения, где нефть очень трудно извлечь и без новых технологий там делать нечего.
В наших геологических условиях, когда больше 70% нефти находится в трудно извлекаемых пластах, ГРП – это единственный способ с которым мы можем экономически рентабельно развиваться, разрабатывать и бурить новые скважины.
И когда для ГРП используют 300 и более т проппанта, то это уже не просто разрыв, а супер ГРП или супер Фрекинг.
Здесь все будет как обычно, но немного не так.
Именно в эту скважину будет закачано 450 т проппанта, те есть это не самый простой супер фрэкинг, и почти 1500 м 3 воды, а все это еще сюда и привезти нужно, а здесь весной это такая беда, что без трактора никуда, да и с ним недалеко.
А привезти нужно 22,5 тягача с проппантом и 75 бочек с водой, потом эту воду надо будет перекачать в емкости и подогреть.
У неоднократных чемпионов Дакара на 1 рейс, а это всего лишь 40 км, уходит по 3-3,5 часа, и то если повезет, если сам ГРП будет длиться всего лишь 5 часов, то процедура подготовки – не менее 3 суток по таким дорогам, причем именно суток, не определяясь на дни и ночи.
То есть, увидев это впервые, проникаешься и эмоциями через край, когда же это только сухие цифры на планерке – ни тени эмоции ни в лице, ни в интонации.
Когда на кустовую площадку заедет весь флот ГРП, то проппант и воду всё еще будут возить, но это будет супер фрахт, не 1, а 2 флота, 22 таких грузовика и 33 человека бригады ГРП.
И это не подстраховка, за время 5 часовой операции под землей, здесь на земле работы хватит на всех, и вспотеть успеют все.
Причем чем больше механизмов, тем больше вероятность получить проблемы – здесь 22 агрегата, связанные только шлангами и проводами, которые должны отработать как одно целое, плюс человеческий фактор и огромная цена ошибки.
Если что-то я недоподам, то может остановиться вся работа, то есть гель, жидкая химия, понизитель трения стабилизатора.
Стоят компьютеры, надо соблюдать пропорции определённые, сколько литров на м 3 подавать.
Флот ГРП – это мобильный комплекс 10-20 крупноразмерных установок на грузовых шасси для проведения ГРП.
Состав комплекса ГРП (флот):
Жидкости опасные-нужны очки, каска, противогаз.
Все начнется с мини ГРП, это такая разминка перед боем.
Чтобы почувствовать, как поведет себя пласт.
Без этой пробы на деле, вся информация геологоразведки – это просто прогноз.
В пласт закачают гель под давлением, гель это вода+гуар (растительный полимер).
Гуар добавляют почти во все йогурты и желе, именно такое желе должно разорвать пласт.
Ну а давление – это не основной источник гидроразрыва, но и источник информации.
Именно по нему выстраиваются все эти замысловатые графики и делаются расчеты, и именно этот показал, что предварительный расчет был верным на 95%.
Радмир Гайнетдинов (начальник геологической службы): «Наша геологическая служба получает данные от заказчика, по ней мы делаем модель и расчёт по добыче.
Мини ГРП позволяет нам при помощи записи давления подойти ближе к реалии самой трещины.
По первоначальным данным наша трещина должна была составлять почти 200 метров в длину, 129 в высоту, после внесения всех калибровок длина увеличивается на 23 м, высота остаётся прежней.
И когда свои расчеты с учетом данных мини ГРП закончит специалист, на летучке по безопасности их озвучит мастер.
Это единственная часть операции, где всех участников можно увидеть вместе – это 33 человека, которых во время самого процесса найти на кустовой площадке на площадке можно будет только по рации.
По работе, подушка 550 м 3 будет с расходом 5,5, первая песочная стадия 5,5, остальные все стадии 5,2.
Начальная концентрация проппанта 100, конечная 1300.
Нам нужно для работы 1341 м 3 воды.
Когда все разойдутся, начнется самое интересное и после этой команды из штаба «Все,за дело» на площадке станет жутко от рева и уровень децибелов здесь не понизится на ближайшие 5 часов.
Гидротационной установке надо перекачать из емкости 1341 м 3 воды, но это без малого и есть 3 бассейна Сибиряк и уже у себя, в таком бассейне превратить ее в гель, смешать с индийским гуаром.
Ну а химтрал – это где жидкости опасные, и следует помнить и про ТБ, и про пропорции, добавить в этот раствор стабилизатор глин.
Если вода без этого стабилизатора попадет на глину в пласте, то глина разбухнет и забьет всю суглинку.
А с нее как с гуся вода, и во время операции она должна оставаться сухой, несмотря на то, что так много воды утечет.
Но еще понизитель трения, это что-то вроде смазки и это уже для проппанта, чтобы он, этот песок не стёр до дыр стенки колонны скважины.
Дальше насосы все это закачают со свистом, точнее с ревом самолета на взлете и между ними, в самом эпицентре напряжения нужно отстоять старшему оператору.
Ну а то давление, которое создают насосы и средний расход гелия – это 5,3 м 3 /мин, будут удерживать пласт разорванным, пока полученная трещина не нафаршируется проппантом, а его уже блендер будет постепенно добавлять в гель, сначала 100 кг/м 3 проппанта, до 1300 кг/м 3 в конце, и это будет чистый проппант, в котором и гель то будет трудно найти.
Судя по этим кривым, гидроразрыв пласта произошел на 1 й минуте, здесь давление резко подскочило до 550 атмосфер, потом резко же упало, потом стабилизировалось, то есть в этот короткий промежуток времени и произошел разрыв пласта, и разорвало его ни что иное, как этот гель.
В гидроразрыве будут использоваться 3 разных вида проппанта, самый мелкий – его закачают 112,5 тонн, чуть покрупнее – 225 т, и такого же, только с резиновой оболочкой – тоже 112,5, это 450 тонн или 9 железнодорожных вагонов.
Брейкер, этот белый порошок, возвращает гель в его обычное состояние, разлагает его на обычную воду, полимер и проппант.
Вода и полимер откачаются из скважины, а этот проппант так и останется расклеивать трещину.
Ну а гидроразрыв так и называется из-за того, что это ни что иное, как разрушение камня водой.
В соответствии с графиком повышается и напряжение у всех присутствующих на станции контроля и оно не спадет до самой остановки насосов.
Потому что никто не может засунуть глаза в скважину на 3 км глубине, и это давление-единственный источник информации.
Такое ощущение, что если оно резко поднимется или резко упадет, то все схватятся за сердце и полезут за валокордином, это будет аварийная ситуация или по здешнему стоп, она может произойти на каждой секунде, а этих секунд надо пережить 18000».
Радион Галлиев (главный специалист отдела супервайзинга): «Это наверное на каждом ГРП есть, потому что когда идет падение дебита, с 400 до 500 поднимается за какой-то короткий промежуток времени – вот это самая напряженная ситуация.
Конечно, это на каждом ГРМ, вне зависимости от того 400 тонн качаем или 120.
Оно всегда одинаковое.
Если бы у нас не было ГРП, то коэффициент продуктивности у нас составлял бы, где-то 0,3, а при таком большом ГРП как 400 т, именно если эту скважину взять, продуктивность у нас выросла до 1,9, то есть можно сказать, что приток вырос порядка 8 раз».
Алексей Затирахин (старший мастер по повышению): «Весь процесс построен именно на взаимодействии людей, то есть бригада – это семья.
То, как человек сработает на своем месте, из этого складывается успешная работа.
Вообще ГРП напоминает кулачный бой, это мягкий против твердого и вообще непонятно, как этот мягкий гель может сломать твердый камень, но в Юганскнефтегазе провели более 10 тыс. ГРП, и всегда этот гель выходил победителем.
Ну а теперь то, что мы имеем в итоге – там под землей нефть находится в твёрдой структуре, ее очень сложно проходить к устью скважины через этот спресованный песчаник, словно через фильтр, и для того, чтобы это стимулировать, и делают ГРП, те мы в нем делаем трещину и набиваем ее проппантом».
Алексей Никитин (начальник управления повышения): «ГРП можно сравнить с приемом антибиотика в медицине, это новый инструмент, который в умелых руках дает потрясающий эффект, однако в неумелых руках применение этого метода не даст эффекта, а наоборот может навредить.
Для многих это не просто метод интенсификации и увеличения притока нефти и нефтеотдачи, но и средство разработки месторождений.
В 1 ю очередь-это очень мощный инструмент.
Что касается многих мнений по поводу пользы и вреда ГРП, то споры до сих пор не утихают.
Именно на старых месторождениях, таких как Усть-Балыкское и Мамонтова, мы, используя ГРП, смогли увеличить текущую добычу, предотвратить падение, которое уже было нами запланировано, и во многом реанимировать старый фонд.
В проектах работ на разработку месторождений есть один очень важный фактор – коэффициент извлечения нефти, который редко бывает больше 35, как правило, от 30 до 40% или в долях единицы – 0,3 и 0,4.
По применению ГРП и вовлечению в разработку ранее не гринированных участков пластов позволяет нам на том же фонде скважин на несколько единиц (%) поднять этот коэффициент извлечения нефти (КИН).
Если бы мы не применяли этот метод, то нам бы приходилось забуривать много вторых стволов, бурить новые скважины, чтобы поднять эту пропущенную нефть.
Если говорить о самом процессе ГРП, то для многих он, как черный ящик, но это не так, мы уже знаем какие параметры на входе и что мы получим на выходе, для нас это не черный ящик.
Мы достаточно четко себе представляем, как развивается трещина, каким образом туда заходит проппант и какие процессы там происходят.
Если мы понимаем эти процессы, то мы можем их улучшить, соответственно увеличивается эффективность метода ГРП.
Здесь важен не только процесс ГРП, но и взаимодействие всех служб, подготовка скважины ГРП, сам ГРП, освоение скважины, спуск насоса, последующий вывод насоса на режим, вывод скважины на режим, все это одно большое мероприятие, провал на каком-то этапе даст негативное восприятие всего процесса.
Также применяется многостадийный гидроразрыв пласта (МГРП), который является одним из самых передовых технологий в нефтяной отрасли, наиболее эффективная для горизонтальных скважин».
ФИЦ ИВТ
Директор ИВТ СО РАН д.ф.-м.н. Сергей Григорьевич Черный.
Для чего нужен гидроразрыв пласта (ГРП), почему его необходимо моделировать, что такое продвинутая модель и кому она интересна – на эти и другие вопросы отвечает директор Института вычислительных технологий СО РАН доктор физико-математических наук Сергей Григорьевич Черный.
1. Для чего нужен ГРП
Гидроразрыв изобретен для разработки месторождений полезных ископаемых и строительства подземных сооружений в сложных геолого-физических условиях – когда необходимы методы управляемого разрушения и разгрузки массивов горных пород, создания в них дренажных систем, изолирующих экранов и так далее. Особое место ГРП занимает среди методов интенсификации работы нефтяных и газовых добывающих скважин и увеличения приемистости нагнетательных скважин. В 2015-2017 году в России проводилось по 14-15 тысяч операций ГРП в год, в США – около 50 тысяч.
Метод ГРП заключается в создании высокопроводимой трещины в нетронутом массиве породы для обеспечения притока к забою скважины газа, нефти, их смеси, конденсата и др. Технология проведения ГРП включает в себя закачку в скважину с помощью мощных насосов жидкости гидроразрыва: геля, воды, либо разбавленной кислоты. Давление закачки выше давления разрыва пласта, поэтому образуется трещина. Для ее закрепления в открытом состоянии используется либо проппант, расклинивающий разлом, либо кислота, разъедающая стенки созданной трещины. Название проппант пришло из англоязычного сокращения «propping agent» – расклинивающий наполнитель. В этом качестве используется, например, кварцевый песок или специальные керамические шарики, более прочные и крупные, а, значит, более проницаемые.
2. Для чего нужно моделирование ГРП
Создание технологии ГРП требует моделирования его процесса. Это позволяет прогнозировать геометрию трещины и оптимизировать всю технологию ГРП. В частности, очень важно обеспечить правильную форму трещины на начальном участке ее распространения в окрестности скважины. Надо, чтобы у нее отсутствовали резкие перегибы, которые могут привести к возникновению пробок, закупоривающих канал откачки добываемых нефти или газа. Возникает естественный вопрос: откуда брать необходимые для работы модели геофизические данные о пласте, такие как проницаемость, пористость, сжимаемость, напряженное состояние и другие?
Такой вопрос возник задолго до разработки технологии ГРП и наука предложила множество методов определения различных параметров задачи. Это и анализ кернов (образцов породы, получаемых во время бурения), и множественные датчики давления и деформаций, установленные в различных частях скважины, и методы сейсморазведки, в которых по времени прохождения упругих волн, индуцируемых с поверхности, определяют границы различных материалов в породе и их параметры, и даже замеры естественной радиоактивности, которая может показать, например, местоположение глиняных пропластков.
Для определения главных напряжений залегания в нетронутом массиве у геофизиков имеются проверенные технологии, в том числе базирующиеся на натурном бурении и геофизических измерениях. Также используется технология мини-ГРП, в которой по параметрам, получаемым в процессе создания маленькой трещины, калибруются модели, по которым будет предсказываться поведение трещины большего размера. Разумеется, полную картину не может дать ни один из подходов, поэтому методы получения информации о пласте постоянно совершенствуются, в том числе и в нашем институте. Например, нами показано, что параметры трещиноватости породы, окружающей скважину, можно определить, решая обратные задачи на основе моделей фильтрации бурового раствора и замеряемых зависимостей давления в скважине. Также мы определяем структуру и параметры прискважинной области по результатам каротажного зондирования, решая обратную задачу на основе уравнений Максвелла.
3. Давно ли ведется моделирование ГРП
Сравнительно давно, с 50-х годов XX века, практически сразу после того, как ГРП как метод увеличения продуктивности скважины начал использоваться. Тогда же, в 1955 г. была предложена одна из первых моделей ГРП – модель Христиановича-Желтова, получившая дальнейшее развитие в работе Гиртсма и де Клерка и известная во всем мире как модель Христиановича-Гиртсма-де Клерка (KGD). Немного позднее были созданы еще две известные, широко используемые и в настоящее время модели: Перкинса-Керна-Нордгрена (PKN) и модель плоскорадиальной трещины. Эти три модели представляют соответственно три основные геометрические концепции во множестве плоских одномерных моделей:
Три базовых концепта и их модификации достаточно хорошо описывают ГРП для типичных ориентаций скважин в традиционных месторождениях нефти и газа, предполагающих вертикальное или наклонное бурение и одну трещину гидроразрыва на одну скважину. Эти модели не потеряли своей актуальности и благодаря своей скорости используются в современных симуляторах ГРП, как для получения первичной информации о трещине, так и для оптимизации параметров ГРП.
Однако в настоящее время в связи с истощением традиционных, легкоизвлекаемых запасов все большее место в мире занимает разработка нетрадиционных месторождений, которые характеризуются более сложной структурой нефтеносных и газоносных пластов. Отличительными особенностями таких пластовых резервуаров являются низкая (плотный песок) и ультранизкая (сланцевые газ и нефть) или наоборот экстремально высокая (песчаник с тяжелой нефтью) проницаемость пласта, присутствие разветвленной системы трещин, которые могут содержать одно или более семейств, ориентированных в различных направлениях и пересекающих друг друга. Очень часто разработка таких нетрадиционных месторождений становится экономически невыгодной без такой интенсификации добычи, как ГРП. В то же время традиционные модели ГРП не позволяют адекватно описывать эти процессы, и требуются новые более изысканные (современные, продвинутые, усовершенствованные) модели.
4. Способен ли ИВТ СО РАН решить проблему моделирования ГРП для нетрадиционных месторождений
ГРП – сложная технология, и разработка модели всего процесса не под силу одному институту, поэтому во всем мире группы ученых концентрируются на различных частях этой технологии. ИВТ обладает большим опытом в моделировании начального этапа распространения трещины ГРП: от ее образования до достижения ей размеров нескольких метров. На этом этапе, в отличие от развитой трещины, размеры которой достигают уже сотен метров, сильно заметно и сильно влияет искривление, которое необходимо учитывать.
Поэтому мы развиваем направление усовершенствования моделей в плане учета в них трехмерности процесса распространения. Для реалистичного описания продвижения фронта трещины в произвольном трехмерном случае необходимо применять трехмерный же критерий нахождения приращения фронта трещины и выбора направления его распространения, учитывающий смешанное нагружение по всем трем модам напряжений. Среди существующих работ, посвященных трехмерным моделям распространения, отклонение фронта трещины определяется только по второй моде. В них используются двумерные плоские критерии. Нами построена и верифицирована новая полностью трехмерная численная модель распространения трещины от полости под воздействием давления закачиваемой жидкости сложной реологии с трехмерным критерием распространения. Она позволила описать эволюцию трещины от момента ее образования до выхода на главное направление, с учетом ее искривления.
Еще одной отличительной особенностью этой модели является одновременное рассмотрение в ней самой скважины и переменной нагрузки, вызванной течением жидкости, в распространяющейся от скважины трещине. Обычно в работах по трехмерному моделированию распространения трещины скважина не присутствует в модели. В лучшем случае рассматривается переменная нагрузка в трещине, вызванная закачиванием в нее ньютоновской жидкости из точечного источника.
Следует также отметить, что технологическая разработка нетрадиционных пластовых резервуаров сопровождается проектированием новых жидкостей гидроразрыва и различных добавок к ним (волокна, флока и др.), которые значительно изменяют реологическое поведение этих жидкостей. Например, возрастающий интерес к плотным и ультраплотным нетрадиционным пластовым резервуарам с высоким содержанием глины привел к разработке специальных составов с большими долями газа и малыми долями воды. Эти жидкости не ухудшают фильтрационные свойства породы и не вызывают ее физическое разрушение при их закачивании.
В нашей монографии, вышедшей в 2016 году, проведено обобщение разработанных ИВТ СО РАН моделей трещин. В ней собраны результаты, опубликованные в высокорейтинговых журналах, входящих в базы цитирования WoS и Scopus, таких как «Engineering Fracture Mechanics», «International Journal of Fracture» и другие.
5. Зачем нужна модифицированная модель
Как будет располагаться развитая трещина – более или менее известно. Есть термин preferred fracture plane – плоскость предпочтительного распространения трещины. Если известны напряжения (силы) сжимающие породу и их направления (определить их тоже проблема, ей занимаются геофизики), то эту плоскость определить не составляет труда. В современных моделях и симуляторах основное внимание уделяется конфигурации трещины в этой плоскости. Когда же трещина только зарождается от скважины, на положение и направление влияют не только напряжения в породе, но и скважина, и обсадная колонна, и перфорации (дырки в породе), их форма, размеры. И направление трещины в начале процесса не всегда совпадает с плоскостью, в которой будет лежать развитая трещина. Неизбежно возникает искривление трещины, в котором возникает пережатие трещины. Такое пережатие не только может привести к застреванию проппанта, но и вызывает сильное падение давления у скважины. Сейчас в симуляторах это падение давления учитывают с помощью эмпирического коэффициента – скин-фактора, и не очень успешно. Наша модель позволяет более точно предсказывать и описывать этот эффект.
6. Может ли модифицированная модель ГРП применяться непосредственно на промыслах
Изначально ИВТ не был ориентирован на реализацию известных моделей и разработку технологий, а концентрировался на создании их научных основ. Однако таковые основы имеют и непосредственное практическое применение. Например, в начале процесса ГРП для инициирования трещины требуется большее давление, чем для ее поддержания. И определить это давление не всегда просто, а от него зависит количество и тип необходимого оборудования. В мировой литературе представлены приближенные аналитические оценки, были попытки расчетов, но окончательного решения проблемы не найдено. Нами разработана модель инициирования трещины, которая (модель) по конфигурации и напряжениям в породе предсказывает и давление разрушения, и тип образовавшейся трещины, и ее ориентацию.
Эту модель нельзя непосредственно применять в поле. Расчет и настройка занимает некоторое время. Кроме того, требуется точное знание направлений напряжений, их значений, направлений перфораций. Обычно этой информации нет, так как точность измерений не всегда достаточна, из-за высокой стоимости не все напряжения в породе измеряются, направления перфораций нельзя точно установить, так как от места, где фиксируется обсадная колонна, до перфораций несколько километров.
Но модель может сказать, какие ориентации скважины наиболее опасны с точки зрения неудачного ГРП, с точки зрения образования продольной трещины (которая нежелательна при многостадийном ГРП), интервалы давления, необходимого для начала ГРП. Такое исследование, например, мы проводили по заказу компании «Шлюмберже» для месторождения в Омане, которое расположено на глубине более четырех километров и сильно сжато не только в вертикальном, но и в горизонтальном направлении, из-за чего успешных попыток ГРП на нем было меньше половины.
7. Каким видится будущее ГРП в контексте «новой нефти»
Современное состояние традиционных нефтегазовых запасов можно охарактеризовать словом «истощение». Все большее количество добывается из нетрадиционных, трудноизвлекаемых коллекторов. Примерами являются носители так называемой «сланцевой нефти» или, если использовать корректный термин – «нефти низкопроницаемых коллекторов» в США и Канаде, или баженовская свита в России. Последняя, хотя и обладает огромными запасами, но значительно более сложна для освоения. Порода имеет множество особенностей не только по сравнению с традиционными коллекторами, но и с популярными на американском континенте «сланцами». Во-первых, это слабые в сотни и десятки раз, соответственно, проницаемость и пористость. То есть нефти в ней содержится меньше, и перемещается к скважине она хуже. Нефть из таких пород невозможно добывать без использования ГРП.
Во-вторых, породы такого типа характеризуется сильной слоистостью и пластичностью или, скорее, текучестью, высоким поровым давлением, что осложняет и проведение гидроразрыва, и его моделирование. С точки зрения последнего необходимо дополнительно учитывать анизотропность напряжений, материала, пластические эффекты при описании распространения трещины, нелинейность деформаций при оседании трещины на проппант. Замечу, что кроме непосредственно гидроразрыва, освоение этой формации требует решения множества научных и технологических задач, над чем работают ученые в Сколково и в МГУ, в Санкт-Петербурге и в Новосибирске.
