класс изоляции iec 85 f что это
Класс изоляции iec 85 f что это
ГОСТ 8865-93
(МЭК 85-84)
СИСТЕМЫ ЭЛЕКТРИЧЕСКОЙ ИЗОЛЯЦИИ
Оценка нагревостойкости и классификация
Electrical insulation systems.
Thermal evaluation and classification
Дата введения 1995-01-01
1. РАЗРАБОТАН Госстандартом России
ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации
2. ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.
За принятие проголосовали:
Наименование национального органа по стандартизации
3. Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 02.06.94 № 160 межгосударственный стандарт ГОСТ 8865-93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.01.95
Ссылочные нормативно-технические документы
Обозначение государственного стандарта
Обозначение стандарта МЭК
Номер раздела, пункта
1. Область распространения
Настоящий стандарт распространяется на электротехнические изделия и устанавливает систему классификации электроизоляции электротехнических изделий по нагревостойкости и ответственность за ее выбор, а также правила оценки нагревостойкости электроизоляционных материалов и систем изоляции, их взаимосвязь и влияние условий эксплуатации.
2. Общие положения
2.1. Классы нагревостойкости
Стойкость изоляции электротехнических изделий зависит от многих факторов, таких как температура, электрические и механические воздействия, вибрация, агрессивность среды, химические воздействия, влажность, загрязнение и радиационное излучение. Поскольку для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, для оценки стойкости электрической изоляции электротехнических изделий к воздействию температуры приняты классы нагревостойкости.
Классы нагревостойкости и соответствующие им температуры приведены в таблице
Обозначение класса нагревостойкости
Температура выше 250 °С должна повышаться на интервал в 25 °С с присвоением соответствующих классов.
Использование буквенных обозначений необязательно. Но следует придерживаться вышеприведенного соответствия между буквенными обозначениями и температурами. Если п.2.1.5 применяется по отношению к специальному виду оборудования, можно использовать альтернативную систему классификации.
Класс нагревостойкости электротехнического изделия отражает максимальную рабочую температуру, свойственную данному изделию при номинальной нагрузке и других условиях.
2.1.1. Условия эксплуатации
При нормальных условиях эксплуатации можно получить удовлетворительный экономичный срок службы для таких электротехнических изделий, как вращающиеся машины, трансформаторы и т.д., спроектированных и изготовленных в соответствии со стандартами, основанными на температурах, представленных в п.2.1, делая необходимые допуски для учета факторов, характерных для данного изделия.
2.1.2. Электроизоляционные материалы в системах изоляции
Присвоение электротехническому изделию конкретного класса нагревостойкости не означает, что каждый электроизоляционный материал, используемый в конструкции изделия, имеет такую же нагревостойкость. Нагревостойкость отдельных материалов, входящих в систему изоляции, может не соответствовать нагревостойкости самой системы. В системе характеристики нагревостойкости электроизоляционного материала могут быть улучшены за счет предохраняющего эффекта других материалов, входящих в данную систему изоляции. С другой стороны, несовместимость между материалами может понизить соответствующий температурный предел всей системы по сравнению со значениями для отдельных материалов. Совместимость материалов в системе изоляции и установление максимальной рабочей температуры для всей системы должны устанавливаться в ходе функциональных испытаний или в результате опыта эксплуатации.
2.1.3. Температура и превышение температуры
Температура, приведенная в настоящем стандарте, является фактической температурой изоляции, но не превышением температуры электротехнического изделия. В стандартах на электротехнические изделия обычно нормируют величину превышения температуры, а не фактическую температуру. При разработке таких стандартов, устанавливая методы измерения и допустимое превышение температуры, следует учитывать такие факторы, как конструкция, температурная проводимость и толщина изоляции, доступность изолированных частей, метод вентиляции, характеристики нагрузки и т.д.
2.1.4. Другие факторы воздействия
Кроме температуры, на способность изоляции выполнять свои функции влияют такие факторы, как механические нагрузки, действующие на изоляцию и ее опорные конструкции, а также вибрация и тепловое расширение, роль которого может возрастать с увеличением габаритов изделия. Вредное влияние может оказывать атмосферная влага, загрязнение, химические воздействия. Все эти факторы следует принимать во внимание при разработке конкретных изделий. Дополнительная информация об этом содержится в ГОСТ 27905.1.
2.1.5. Характеристика изоляции
Фактическая характеристика изоляции при эксплуатации зависит от конкретных условий, которые могут меняться в зависимости от воздействия окружающей среды, рабочих циклов изделия. Кроме того, прогнозируемая характеристика при эксплуатации зависит от относительного значения размеров, надежности периода использования сопряженного оборудования и экономической целесообразности. Для некоторых видов изделий целесообразно установить значение температуры изоляции, превышающей нормальную или ниже нормальной. Такие случаи могут иметь место, когда ожидается срок службы короче или длиннее нормального, или существуют особые условия эксплуатации.
Срок службы изоляции зависит от защиты от кислорода, влаги, загрязнений и химических воздействий. Следовательно, при данной температуре срок службы изоляции может увеличиваться, если она защищена от воздействия промышленной атмосферы.
Использование химически инертных газов или жидкостей в качестве охлаждающей или защитной среды может повышать стойкость изоляции к воздействию температуры.
Наряду со старением, которому подвергается изоляция, некоторые материалы при нагревании размягчаются и теряют исходные свойства, которые могут восстанавливаться после охлаждения. Такие изоляционные материалы не являются непригодными для их использования.
2.2. Ответственность за выбор и назначение
Ответственность за выбор соответствующих материалов и систем изоляции лежит на изготовителе электротехнического изделия. Основанием для установления рациональных температурных пределов изоляции является только опыт или соответствующие испытания. Опыт эксплуатации является важным критерием при выборе материалов и систем. Основанием для выбора в случае новых материалов и систем являются соответствующие испытания (см. разд. 4).
3. Оценка нагревостойкости электроизоляционных материалов
Многие электроизоляционные материалы, относящиеся к одному основному типу, поставляются в модификациях с разной нагревостойкостью. Следовательно, общая химическая природа электроизоляционного материала не характеризует их термические возможности. При использовании изоляции в электротехнических изделиях характеристики нагревостойкости отдельных материалов могут меняться в зависимости от их комбинации. Нагревостойкость изоляции в электротехнических изделиях также сильно зависит от конкретных функций, возложенных на них.
С точки зрения применения в электротехнических изделиях испытание материалов служит двум целям: оценить материал, предназначенный для использования в системе изоляции в качестве компонента, а также материал, используемый отдельно или составляющий часть простой комбинации, используемой как система изоляции.
Как правило, можно считать, что испытания и опыты являются приемлемой основой для термической оценки электроизоляционных материалов.
Необходим осторожный подход к использованию результатов испытаний с тем, чтобы быть уверенным в их соответствии. Действительно, часто можно проводить оценку, используя результаты опытов разного типа.
Общепринятой основой оценки нагревостойкости электроизоляционных материалов являются испытания и опыт эксплуатации.
Как следует из ГОСТ 27710, при разработке методов испытаний по оценке нагревостойкости материалов могут быть использованы следующие определения:
Различные температурные индексы и половинные интервалы для одного материала можно получить, если для графика нагревостойкости использовать различные испытательные критерии и конечные точки. Различные температурные индексы и половинные интервалы могут указывать на различную нагревостойкость и, следовательно, определяют возможности использования материала.
Испытания стандартных образцов могут дать результаты, отличающиеся от результатов испытаний на образцах, имеющих тот вид, в котором материал будет использоваться. Следовательно, результаты испытаний систем изоляции можно использовать для проверки соответствия материала его применению.
Описание системы изоляции класса F (до 155°С)
Система изоляции электрических машин класса F (до 155°С) с использованием предварительно пропитанных лент ЛСп-F-ТПл(2Пл) на базе компаунда КП-303.
Состав системы изоляции класса F.
Краткое описание системы изоляции.
Система изоляции, предлагаемая ЗАО «Диэлектрик» является сбалансированной системой изоляции класса нагревостойкости F, основными элементами которой являются пропитанные ленты на модифицированном компаунде КП-303 и пропитывающий компаунд КП-303Г.
Пропитанные ленты ЛСп-F-ТПл(2Пл) сделаны на некальцинированной флогопитовой слюдобумаге, что значительно повышает диэлектрические свойства изоляции, так как флогопитовая слюдобумага, в силу особенностей своего производства имеет в своем составе слюду с неразрушенной кристаллической решеткой в отличии от слюдобумаги мусковитной, полученной в процессе глубокой термо- и химобработки. Компаунд КП-303, находящийся в композиции ленты делает ее эластичной и очень технологичной. Кроме этого, компаунд КП-303 проверен на токсичность Санэпидемнадзором, который выдал гигиенический сертификат, подтверждающий безопасность работы с этим компаундом. Поэтому при работе с нашими лентами значительно снижается риск аллергических заболеваний, наблюдаемых при работе с такими лентами, как ЛСЭК-5ТПл, ЛСК-110ТПл.
Другим преимуществом нашей системы изоляции является то, что пропитывающий компаунд КП-303Г обладает ускоренным временем отверждения при температуре 160° С, что значительно снижает энерго- и трудозатраты. А ведь энергозатарты составляют свыше 30-ти % в себестоимости ремонта электродвигателя. На сегодняшний день в качестве пропитывающих составов используются лаки ФЛ-98, КО-916, компаунды ПК-11, ВЗТ-1, КП-50, КП-55. Лак ФЛ-98 отверждается в течение 20-24 часов. При этом требуется повторная пропитка, которая увеличивает время пропитки, а значит трудо- и энергозатраты, в 2 раза. Время отверждения нашего компаунда 2-3 часа, при этом он обладает, великолепной цементирующей способностью и «живет» в течении не менее 6 месяцев. Компаунд КП-303Г является однокомпонентным и готов к работе сразу же после поставки. Он не требует дополнительного разогрева для снижения вязкости, т.к. имеет исходную вязкость 30″-40″, необходимую для хорошей пропитки. Компаунд КП-303Г обладает еще одним отличительным качеством. Он остается гибким после запечки и не дает микротрещин при укладке секций в пазы, обеспечивая очень хорошую ремонтопригодность электродвигателя. Это качество является несомненным преимуществом перед такими компаундами, как ПК-11, ВЗТ-1, КП-98ИД, которые после запечки очень жестки.
1. Изоляция проводника:
1.1. Изоляционные материалы:
Лента ЛCп-F-ТПл 0,08 мм: стеклоткань + слюд. бумага + плёнка ПЭТФ
(полиэфирэпоксидное связующее)
ЛCп-F-2Пл 0,07 мм: пленка ПЭТФ + слюд. бумага + плёнка ПЭТФ
(полиэфирэпоксидное связующее)
1.2. Дополнительный материал:
липкая лента или клей для закрепления концов ленты
1.3. Описания процесса:
Только концы должны быть зафиксированы липкой лентой либо специальным клеем для того, чтобы избежать их разматывания. Также целесообразно укрепить липкой лентой или клеем места, в которых лента обрезается.
1.3.2. В зависимости от номинального напряжения машины (UN) или требуемой диэлектрической силы Лента ЛСп-F-ТПл(2Пл) накладывается в один или несколько слоев вплотную или в нахлёст (1/3, 1/2, 2/3).
для UN= 6kV 2 слоя в 1/3 нахлёста
для UN= 11 kV 2 слоя в 1/2 нахлёста
1.3.3. Рекомендуемая ширина ленты относится к сечению провода (кондуктора) по следующей таблице:
| Сечение | Ширина |
|---|---|
| 2 | 8 мм. |
| 8-16 мм 2 | 12 мм. |
| > 16 мм 2 | 15 мм. |
![]() |
| рис. 1 |
1.3.4. Толщина изоляции «X» (мм.)
пример:
Лента ЛСп-F-2Пл 0,07 мм. 2×2/3 нахлёста
=> Х= (2 + 2 х 2 х 2/3) х 0,07 = 0,33 мм.
после прессования толщина Лента ЛСп-F-2Пл будет уменьшена с 0,07 мм до 0,056 мм.:
-> Хр = (2 + 2 х 2 х 2/3) х 0,056 = 0,26 мм.
(Хр следует брать для последующих расчётов относительной величины основной изоляции)
2. Предукрепление пазовой части катушек
Предукрепление может быть применено либо после обмотки проводов в рыбообразных катушках, используя листовой пресс, где обе стороны нескольких катушек прессуются в одни шаг (рис. 2.), либо после формирования катушек, где каждая сторона катушки прессуется отдельно в прессе (рис. 3.).








