класс точности токарного станка н что это значит
§ 5. ТОЧНОСТЬ СТАНКОВ
Каждый станок испытывается на соответствие нормам точности. Результаты испытания фиксируются в акте, который прикладывается к паспорту станка.
На каждый тип станка имеется ГОСТ, в котором регламентируются допускаемые отклонения по всем проверкам. В зависимости от типа станка количество проверок может быть различным.
Инструментальный широкоуниверсальный фрезерный станок модели 676П имеет 45 проверок.
Станки в зависимости от точности работы подразделяются на классы (табл. 16).
Таблица 16 Классификация станков по точности
Класс точности станков
Станки нормальной точности
Станки повышенной точности
Станки высокой точности
Станки особо высокой точности
Особо точные станки
Станки нормальной точности, как и универсальные, предназначаются для обработки заготовок из проката, поковок и литья.
Станки повышенной точности, как правило, изготовляются на базе станков (нормальной точности, но отличаются более точным выполнением отдельных деталей, особенностями и тщательностью монтажа, а также особенностями использования в условиях эксплуатации на заводе-потребителе.
Станки высокой и особо высокой точности предназначаются для более высокой точности обработки, что достигается специальными конструктивными особенностями их элементов, высокой точностью их изготовления и специальными условиями эксплуатации.
Особо точные станки предназначаются для достижения наивысшей точности обработки вполне определенных, очень ответственных и точных деталей типа делительных колес и дисков, эталонных зубчатых колес, измерительных винтов и т. д.
Широкоуниверсальные фрезерные станки изготовляются классов П и В, а координатно-расточные станки изготовляются, как правило, классов А и С.
Точность станков различных классов характеризуется тем, что допускаемые отклонения по проверкам одного класса по отношению к другому отличаются в 1,6 раза.
Для примера приведены величины допускаемых отклонений прямолинейности движения на длине перемещения 200 мм (табл. 17).
Таблица 17 Величина допускаемых отклонений прямолинейности движения для станков различных классов точности
Станки токарной группы. Классификация и выбор основных технических показателей.
Классификация токарных станков по основным и вспомогательным признакам
Токарная обработка (точение) предназначена для механического формирования геометрии деталей машиностроения лезвийным инструментом посредством снятия стружки. Кинематика резания определяется в основном относительным вращательным движением заготовки с пространственно фиксированной осью вращения и произвольным движением подачи. Объектами обработки являются чаще всего соосные поверхности вращения и плоские поверхности деталей типа валов, дисков и втулок, включая нарезание наружных и внутренних резьбовых поверхностей, а также поверхности некоторых других форм, например некруглых, путем введения дополнительного относительного движения инструмента [36]. Формы поверхностей, получаемых способами токарной обработки, приведены в табл. 1.12.1.
Классификация станков токарной группы только по технологическим признакам недостаточна вследствие новых возможностей, предоставляемых устройствами ЧПУ в технологическом и конструктивном отношении, поэтому целесообразно использование признаков, отражающих конструктивно-видовые особенности токарных станков, а именно: основной конструктивный признак; вспомогательный видовой признак; компоновка; количество позиций закрепления заготовок; число устанавливаемых инструментов; вид управления; класс точности [20].
Классификация станков по основным и вспомогательным признакам приведена в табл. 1.12.2.
Компоновка станков обусловлена положением главной оси вращения заготовки и относительным положением инструмента в пространственной системе координат, используемой в ISO recommendation R-841. По этому признаку выделяются горизонтальные и вертикальные компоновки.
Уровень концентрации операций, выполняемых на одном станке, характеризуется числом рабочих позиций и способом закрепления заготовок (одно- и многошпиндельная патронная; одно- и многошпиндельная цанговая (прутковая); одно- и многошпиндельная центровая; комбинированная), а также условиями, определяющими эффективность используемого инструмента: числом и сложностью форм обрабатываемых поверхностей с различным направлением подачи; числом разнотипных инструментов; возможностями пространственной ориентации инструментов относительно заготовки; сопоставимостью времен обработки поверхностей.
В этой связи особое внимание уделяется концентрации операций токарной обработки, созданию многоцелевых токарных станков, объединяющих выполнение внецентрового сверления, некоторых фрезерных и других подобных операций. При этом принимаются меры для сокращения внецикловых потерь, связанных с переналадкой, контролем, загрузкой-выгрузкой, сменой инструмента и другими, что возможно при наличии развитой системы управления станком на базе ЧПУ [4].
1.12.1. Типовые поверхности, получаемые при токарной обработке
1.12.2. Классификация станков по основным и вспомогательным признакам
Классификация токарных станков по степени автоматизации
Степень автоматизации – это отношение времени автоматических переходов ко всему времени обработки изделия на станке.
Возможности и классификация современных токарных станков по степени автоматизации приведены в табл. 1.12.3.
1.12.3. Классификация токарных станков по степени автоматизации
Классификация токарных станков по точности
Точностью называется степень приближения действительных значений параметров изделия к идеальным параметрам.
Точность оценивается действительной погрешностью или пределами, ограничивающими значения погрешности (нормированная точность).
Погрешности станка непосредственно влияют на точность обработки.
Точность станков регламентируется государственными (отраслевыми) стандартами, в целом содержащими пять классов точности.
Распределение основных видов станков токарной группы по классам точности приведено в табл. 1.12.4. Специальные и специализированные станки таблицей не охватываются.
Технические и технологические показатели токарных станков определяются совокупностью компонентов и их составляющих, основные из которых отражены в табл. 1.12.5.
1.12.4. Классы точности и основные виды станков токарной группы
| Основные виды станков | Н | П | В | А | C |
| Токарные и токарно-винторезные | + | + | + | + | + |
| Токарные полуавтоматы и автоматы | + | + | + | — | — |
| Токарные револьверные | + | + | + | + | — |
| Токарные копировальные | + | + | — | — | — |
| Карусельные и лобовые | + | + | + | — | — |
| Затыловочные и резьбообрабатывающие | + | + | + | + | — |
| Многоцелевые, специализированные и специальные | — | + | + | + | — |
Соотношения (коэффициенты) между оптовыми ценами на станки различных классов точности по ГОСТ 8-82
| Базовый | Н | П | В | А |
| Класс точности «Н» нормальный | 1,0 | 1,13 | 1,4 | 2,0 |
| Класс точности «П» повышенный | — | 1,0 | 1,25 | 1,75 |
| Класс точности «В» высокий | — | — | 1,0 | 1,4 |
| Класс точности «А» особо высокий | — | — | — | 1,0 |
Виды погрешностей оборудования
Геометрические погрешности.
Характеризуют погрешности взаимного расположения узлов станка и зависят от качества изготовления и сборки станка. Точность изделия по геометрическим параметрам – это совокупное понятие, подразделяющееся по следующим признакам:
Кинематическая точность
Влияет на скорость движения рабочих органов оборудования, на формообразование при зубообработке; они являются следствием погрешностей винтовых пар, зубчатых колес, переменная жесткость узлов и т.д.
Технические и технологические показатели станков токарной группы
1.12.5. Технические и технологические показатели станков токарной группы
Технико-экономические показатели станочного оборудования
Производительность определяется способностью оборудования обеспечивать обработку определенного количества деталей в единицу времени. Используется несколько количественных показателей производительности.
Степень унификации
Металлоемкость оборудования – оценивается по удельной массе металла с учетом повышения производительности и, точность, относительно сравниваемой модели. Согласно РД2-Н06-34-87
Удельный расход электроэнергии
Экономическая эффективность станочного оборудования
Экономическая эффективность является главным объективным критерием для создания нового станка или оборудования, а также для принятия всех решений при его конструировании.
Надежность станочного оборудования по ГОСТ 27.002-83 «Надежность техники. Термины и определения»
Надежность – это свойство объекта сохранять во времени в установленных пределах значение всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования.
Надежность – это комплексное свойство, которое в зависимости от назначения объекта и условий его эксплуатации состоит из сочетания свойств: безотказности, долговечности, ремонтопригодности и сохраняемости.
Безотказность – это свойство объекта непрерывно сохранять работоспособное состояние, в течение некоторого времени или некоторой наработки.
Долговечность – это свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.
Показатели надежности
Список литературы
Москва, Машиностроение. Энциклопедия 2002. Под редакцией К.В. Фролова
Полезные ссылки по теме. Дополнительная информация
Классы точности станков
Класс точности станка
Допустимые отклонения по проверкам соседних классов точности станков отличаются друг от друга в 1,6 раза. Вот таблица величин допускаемых отклонений при прямолинейном движении для станков, имеющих различный класс точности.
Класс точности станка
Допустимые отклонения, микроны
ГОСТ 8-82 для всех видов металлорежущих станков, в том числе и настольных с ЧПУ, устанавливает стандарт общих требований к испытаниям на точность. По нему точность всех станков этого типа определяется по трем группам показателей:
Этот стандарт устанавливает порядок присвоения группе станков одинакового класса точности, который должен обеспечивать одинаковую точность обработки идентичных по форме и размеру образцов изделий.
2) Классификация станков по классу точности, универсальности, автоматизации, массе
Классификация станков по группам и типам
По виду обработки в СССР была принята следующая классификация, которая продолжает действовать в России. В соответствии с ней металлорежущие станки разделяются на следующие группы и типы:
Автоматы и полуавтоматы
Специализированные для фасонных изделий
Шлифовальные, полировальные, доводочные
Плоскошлифовальные с прямоугольным или круглым столом
Притирочные и полировальные
Разные станки, работающие абразивным инструментом
Зубо-, резьбо- обрабатывающие
Зубострогальные для цилиндрических колёс
Зуборезные для конических колёс
Зубофрезерные для цилиндрических колёс и шлицевых валиков
Зубофрезерные для червячных колёс
Для обработки торцов зубьев колёс
Зубо- и резбо- шлифовальные
Разные зубо- и резьбо- обрабатывающие
Фрезерные непрерывного действия
Копировальные и гравировальные
Строгальные, долбежные, протяжные
Муфто- и трубо- обрабатывающие
Правильно- и бесцентрово- обдирочные
Для испытания инструмента
специализированные, которые предназначены для изготовления однотипных деталей, например, корпусных деталей, ступенчатых валов сходных по форме, но различных по размеру;
специальные, которые предназначены для изготовления одной определенной детали или одной формы с небольшой разницей в размерах.
Классификация станков по степени автоматизации.
С ручным управлением – механизированы только основные движения (главное движение и движение подачи), вспомогательные движения и управление в ручном режиме.
Полуавтоматы – механизированы и автоматизированы все движения, кроме установки и снятия детали.
Автоматы – автоматизированы и механизированы все движения, включая загрузку и разгрузку станка
3. Условные обозначения станков
После класса точности, модернизации могут стоять буквы обозначающие системы ЧПУ+цифра.
Т1- с оперативной системой ЧПУ (устаревшая);
Ф1 – с элементами системы ЧПУ;
Ф2 – позиционная система ЧПУ;
Ф3 – контурная система ЧПУ;
Ф4 – комбинированная система ЧПУ
4. Технико-экономические показатели качества станков: эффективность, гибкость, надежность.
Для сравнительной оценки технического уровня станков или выбора станка для решения конкретной производственной задачи используют ряд показателей: эффективность, надёжность, гибкость.
Эффективность – комплексный показатель, наиболее точно отображающий способность станка выпускать максимальное кол-во изделий при минимальных затратах. А = N / SC шт/руб, N – годовой выпуск деталей, SC – суммарные затраты на их изготовление.
Надёжность – свойство станка обеспечивать бесперебойный выпуск продукции в заданном кол-ве в течение определенного срока службы. Надёжность – комплексное понятие и характеризуется долговечностью, ремонтопригодностью, безотказностью и сохраняемостью.
Гибкость станка – это способность станка к быстрой смене и наладке. Она характеризуется универсальностью и переналаживаемостью. Универсальность оценивают числом разных деталей, подлежащих обработке на данном станке.
Классификация металлорежущих станков – все об оборудовании для обработки металла
Металлорежущие станки, выпускаемые отечественными производителями, подразделяются на несколько категорий, которые характеризует соответствующая классификация. Определить, к какой категории относится то или иное оборудование, можно по его маркировке, которая о многом говорит тем, кто в ней разбирается. Однако к какой бы категории ни относилось металлорежущее устройство, суть обработки на нем сводится к тому, что режущий инструмент и деталь совершают формообразующие движения, а именно они и определяют конфигурацию и размеры готового изделия.
Наиболее распространенные типы металлорежущих станков: 1-6 — токарные, 7-10 — сверлильные, 11-14 — фрезерные, 15-17 — строгальные, 18-19 — протяжные, 20-24 — шлифовальные.
Виды металлорежущего оборудования
Металлорежущие станки в зависимости от назначения подразделяются на девять основных групп. К ним относятся следующие устройства:
Группы и типы металлорежущих станков (нажмите, чтобы увеличить)
Кроме того, металлорежущие станки могут относиться к одному из следующих типов:
Вертикально-фрезерный станок — один из представителей обширной фрезерной группы
Классификация металлорежущих станков также осуществляется по следующим параметрам:
Маркировка станков
Классификация оборудования, предназначенного для обработки заготовок из металла, предполагает, что, увидев его маркировку, любой специалист сразу сможет сказать, какой металлорежущий станок перед ним находится. Такая маркировка содержит в себе буквенные и цифровые символы, которые обозначают отдельные характеристики устройства.
Первая цифра — это группа, к которой принадлежит металлорежущий станок, вторая — разновидность устройства, его тип, третья (а в некоторых случаях и четвертая) — основной типоразмер агрегата.
Расшифровка маркировки металлорежущих станков
После цифр, перечисленных в маркировке модели, могут стоять буквы, по которым определяется, обладает ли модель металлорежущего станка особыми характеристиками. К таким характеристикам устройства может относиться уровень его точности или указание на модификацию. Часто в обозначении станка букву можно встретить уже после первой цифры: это свидетельствует о том, что перед вами модернизированная модель, в типовую конструкцию которой были внесены какие-либо изменения.
В качестве примера, можно расшифровать маркировку станка 6М13П. Цифры в данном обозначении свидетельствуют о том, что перед нами фрезерный станок («6») первого типа («1»), который относится к 3-му типоразмеру («3») и позволяет выполнять обработку с повышенной точностью (буква «П»). Литера «М», присутствующая в маркировке данного устройства, свидетельствует о том, что оно прошло модернизацию.
Уровни автоматизации
Виды токарных станков, а также устройства любого другого назначения, которые используются в условиях массового и крупносерийного производства, называют агрегатными. Такое название они получили по причине того, что их комплектуют из однотипных узлов (агрегатов): станин, рабочих головок, столов, шпиндельных узлов и других механизмов. Совершенно другие принципы используются при создании станков, которые необходимы для мелкосерийного и единичного производства. Конструкция таких устройств, отличающихся высокой универсальностью, может быть совершенно уникальной.
Токарный станок с ЧПУ
Классификация токарных станков (а также оборудования любых других категорий) по уровню автоматизации подразумевает их разделение на следующие виды:
Наиболее яркими представителями металлорежущих станков являются устройства с ЧПУ, работой которых управляет специальная компьютерная программа. Такой программой, которую в память станка вводит его оператор, определяются практически все параметры работы агрегата: частота вращения шпинделя, скорость обработки и др.
Системой ЧПУ могут оснащаться даже самые компактные настольные станки
Все виды металлообрабатывающих станков, оснащенные системой ЧПУ, содержат в своей конструкции следующие типовые элементы.
Принцип работы металлообрабатывающих станков, оснащенных системой ЧПУ, несложен. Предварительно пишется программа, учитывающая все требования к обработке конкретной заготовки, затем оператор вводит ее в контроллер станка, используя специальный программатор. Команды, заложенные в такую программу, подаются на рабочие элементы оборудования, а после их выполнения станок автоматически отключается.
Использование металлорежущих станков, оснащенных числовым программным управлением, позволяет выполнять обработку с высокой точностью и производительностью, что и является причиной их активного использования для оснащения промышленных предприятий, выпускающих изделия крупными сериями. Такие агрегаты благодаря высокому уровню своей автоматизации отлично встраиваются в крупные автоматизированные линии.
Устройство токарно-винторезного станка
Конструкция станков
Все станки, относящиеся к категории металлообрабатывающих, имеют много общих черт в своей конструкции. По сути, устройство и технические характеристики таких агрегатов должны обеспечивать правильность выполнения технологических движений двух типов:
Для выполнения этих движений, а также для обеспечения стабильности функционирования всех остальных элементов оборудования для металлообработки его конструкция включает в себя следующие рабочие органы:
Станки по металлу: группы и характеристики станков
Металлорежущий станок — это технологическая машина, предназначенная для обработки материалов резанием с целью получения деталей заданной формы и размеров (с требуемыми точностью и качеством обработанной поверхности). На станках обрабатывают заготовки не только из металла, но и из других материалов, поэтому термин «металлорежущий станок» является условным.
Станки классифицируют по различным признакам, основные из которых приведены ниже.
По виду выполняемых работ металлорежущие станки (в соответствии с классификацией ЭНИМСа) распределены по девяти группам, каждая из которых подразделяется на девять типов, объединенных общими технологическими признаками и конструктивными особенностями.
Моделям станков, выпускаемых серийно, присваивают цифровое или цифробуквенное обозначение. Как правило, обозначение состоит из трех-четырех цифр и одной-двух букв.
Первая цифра — это номер группы, к которой относится станок, вторая — номер типа станка, третья и четвертая характеризуют один из главных параметров станка или обрабатываемой на нем детали (например, высоту центров, диаметр прутка, размеры стола и т.п.). Буква после первой или второй цифры указывает, что станок модернизирован, буква, стоящая после цифр, обозначает модификацию (видоизменение) базовой модели станка. Например, модель 7А36 означает: 7 — строгально-протяжная группа, 3 — поперечно-строгальный, 6 — максимальная длина обрабатываемой детали 600 мм, буква А указывает на модернизацию станка базовой модели 736.
Если буква стоит в конце обозначения модели, то она указывает на класс точности станка, например 16К20П — это станок повышенного класса точности; нормальный класс точности в наименовании модели не указывается.
В моделях станков с ЧПУ последние два знака — буква Ф с цифрой (1 — станок с цифровой индикацией и предварительным набором координат; 2-е позиционной системой управления; 3 — с контурной системой управления; 4 — с комбинированной системой управления для позиционной и контурной обработки). Например, зубофрезерный полуавтомат с комбинированной системой ЧПУ — модель 53А20Ф4, вертикально-фрезерный станок с крестовым столом и устройством цифровой индикации — модель 6560Ф1.
В конце обозначения модели станков с цикловыми системами управления ставят букву Ц, а с оперативной системой управления — букву Т. Например: токарный многорезцово-копировальный полуавтомат с цикловым программным управлением — модель 1713Ц; токарный станок с оперативной системой управления — модель 16К20Т1.
Наличие в станке инструментального магазина отображается в обозначении модели буквой М; например, сверлильный станок с позиционной системой программного управления повышенной точности с инструментальным магазином — модель 2350ПМФ2.
По степени универсальности станки подразделяют на универсальные, специализированные и специальные.
Универсальные станки предназначены для обработки деталей широкой номенклатуры в индивидуальном и мелкосерийном производствах. Для этих станков характерен широкий диапазон регулирования скоростей и подач. К универсальным станкам относятся токарные, токарно-винторезные, токарно-револьверные, сверлильные, фрезерные, строгальные и др. (как с ручным управлением, так и с ЧПУ).
Специализированные станки используют для обработки деталей одного наименования, но разных размеров. К ним относятся станки для обработки труб, муфт, коленчатых валов, а также зубо- и резьбообрабатывающие, токарно-затыловочные и др. Для специализированных станков характерна быстрая переналадка сменных устройств и приспособлений; они применяются в серийном и крупносерийном производствах.
Специальные станки служат для обработки детали одного наименования и размера; их применяют в крупносерийном и массовом производствах.
В обозначение специализированных и специальных станков перед номером модели вводят индекс завода-изготовителя из одной или двух букв. Так, Егорьевский станкостроительный завод имеет индекс ЕЗ, Московское станкостроительное ОАО «Красный пролетарий» — МК, например специализированный токарный станок для обработки дисков памяти ЭВМ — модель МК 65-11.
По степени точности обработки станки делят на пять классов:
Станки классов точности В, А и С называют прецизионными (от фр. precision — точность). Эти станки желательно эксплуатировать в термоконстантных цехах, температура и влажность в которых регулируется автоматически.
В зависимости от массы станки подразделяют на легкие — массой до 1 т, средние — до 10-ти тяжелые — свыше 10 т. В свою очередь тяжелые станки делят на крупные (до 30 т), собственно тяжелые (до 100 т) и уникальные (свыше 100 т).
По степени автоматизации различают станки с ручным управлением, полуавтоматы и автоматы. В станках с ручным управлением пуск и останов станка, переключение скоростей и подач, подвод и отвод инструментов, загрузку станка заготовками и разгрузку обработанных деталей и другие вспомогательные операции выполняет рабочий.
Полуавтомат — станок, работающий по автоматическому циклу, для повторения которого требуется вмешательство рабочего. Так, рабочий вручную устанавливает на станок заготовку и снимает обработанную деталь, после чего включает станок для повторения цикла. (Под циклом понимают промежуток времени от начала до конца периодически повторяющейся операции независимо от числа одновременно обрабатываемых заготовок.)
В автомате все рабочие и вспомогательные движения, необходимые для выполнения цикла технологической операции, осуществляются без участия рабочего, который лишь наблюдает за тем, как функционирует станок, контролирует качество обработки и при необходимости подналаживает станок, т.е. регулирует его для восстановления достигнутых при первоначальной наладке точности взаимного расположения инструмента и заготовки, а также качества обрабатываемой детали.
По расположению шпинделя станки делят на горизонтальные, вертикальные и наклонные.
По степени концентрации операций станки подразделяют на одно- и многопозиционные. Концентрация операции — это возможность одновременной обработки на станке различных поверхностей заготовки многими инструментами. На однопозиционных многоинструментальных станках несколько режущих инструментов одновременно обрабатывают различные поверхности одной заготовки, на многопозиционных одновременно обрабатывают от двух и более заготовок.
Особую группу составляют комбинированные станки, например токарно-шлифовальные, строгально-фрезерные, строгаль-но-шлифовальные.
Размерные ряды станков
Для большинства станков стандартами установлены основные (главные) параметры, характеризующие размеры обрабатываемых деталей или размеры самого станка. Совокупность численных значений этих параметров (от наименьшего до наибольшего) образует размерный ряд станков одного типа, т.е. подобных по конструкции, кинематической схеме и внешнему виду.
Конструкция станков размерного ряда состоит в основном из унифицированных узлов, одинаковых или подобных, что облегчает конструирование, изготовление и эксплуатацию станков, а также способствует удешевлению их производства.
Размерные ряды станков строят по принципу геометрической прогрессии, в которой главный параметр станка является членом ряда. В таблице представлены размерные ряды металлорежущих станков основных технологических групп.
Размерные ряды металлорежущих станков основных технологических групп







