В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

Компания ЭТМ запись закреплена

Освежим школьные знания и вспомним о важнейших открытиях в электромагнетизме, а именно об Опыте Эрстеда, силах Ампера и Лоренца. Поможет нам в этом видеоролик, подготовленный компанией EKF.

В 1820 году Ханс Кристиан Эрстед своим экспериментом впервые доказал воздействие электрического тока на магнит, а также заметил, что линии магнитного поля направлены перпендикулярно относительно проводника, по которому протекает ток.

В том же 1820 году Андре Мари Ампер установил, что два параллельных проводника притягиваются друг к другу, если ток в них течет в одном направлении. Силу, которая при этом воздействует на проводники, назвали силой Ампера.

А в 1892 Хендрик Антон Лоренц вывел выражение силы действующий на точечную заряженную частицу, находящуюся в электромагнитном поле.

В 1820 ампер установил что два

В 1820 ампер установил что два

Мне больше нравятся опыты французского физика Жан-Антуан Нолле. Они намного интереснее. )))

Для тех, кто не знает: Скорость электрического тока почти равна скорости света. В 1746 году, когда это ещё не было известно, французский священник и физик Жан-Антуан Нолле захотел измерить скорость тока экспериментально. Он расставил 200 монахов, соединённых друг с другом железными проводами, по окружности длиной свыше полутора километров, а затем разрядил в эту цепь батарею из лейденских банок, изобретённых годом ранее. Все монахи среагировали на ток в одно мгновение, что убедило Нолле в очень высоком значении искомой величины.

Хороший физик. И опыты у него интересные.

В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

Валерий, а еще скорость перемещения отдельно взятого электрона очень большая, но при этом его скорость перемещния ВДОЛЬ проводника мала, и в принципе не определима.

Ну то есть представим что в точке А в это мгновение сидит себе электрон спокойненько, подёргивается от теплового воздействия, да еще от разных других, которые передают ему определенную энергию, тут вдрог замкнули вы рубильник, да напряжение подали. Электрон тут же сорвется и полетит, но куда он полетит? На другую орбиталь или же к другому атому? Сколько раз он столкнется и будет ли он двигаться в том же направлении? Да он никогда может и не «доползти» до другого конца проводника.

Но в целом скорость электического ТОКА, читайть как ПОТОКА, ДВИЖЕНИЯ — мгновенна.

Как в старом анекдоте про скорость включения лампочки и понос у Вовочки

Источник

Магнитного поля

В 1820 ампер установил что два В 1820 ампер установил что два В 1820 ампер установил что два В 1820 ампер установил что два

В 1820 ампер установил что два

В 1820 ампер установил что два

И Био-Савара-Лапласа. Принцип суперпозиции для

Магнитное поле и его характеристики. Законы Ампера

В 1820 ампер установил что дваВсе мы слышали слова “магнитное поле”, знаем, что постоянные магниты притягивают металлы, знаем, что стрелка компаса ориентируется вдоль магнитного поля Земли. Сейчас мы более детально познакомимся с тем, что мы называем “магнитное поле”. Итак, учение о магнетизме ведёт своё начало с опытов датского физика Х. Эрстеда, который в 1820 г. обнаружил, что проводник с током оказывает ориентирующее воздействие на магнитную стрелку. Схема опыта Эрстеда показана на рис. 3.1. При включении тока через прямолинейный проводник магнитная стрелка устанавливалась перпендикулярно току. При смене направления тока в проводнике изменялось и направление магнитной стрелки. В том же 1820 г. французский физик Ампер установил, что два параллельных прямых проводника с током, размещённых на некотором расстоянии R друг от друга, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если токи в этих проводниках противоположно направлены. Он же установил и формулу силы, приходящейся на единицу длины каждого проводника. Сейчас выражение для этой силы записывается в виде

В 1820 ампер установил что два. (3.1)

dF = I [d l,B]. (3.2)

Квадратные скобки в формуле (3.2) обозначают векторное произведение. Модуль векторного произведения (3.2) определяется как

где a – угол между векторами dl и B. Здесь же отметим, что направление силы перпендикулярно плоскости, в которой лежат перемножаемые векторы и определяется правилом правого винта для определения направления векторного произведения.

Так как магнитное поле является силовым, то его можно графически изобразить при помощи линий магнитной индукции, касательная к которым в каждой точке совпадает с направлением индукции магнитного поля в этой же точке. Подчеркнём, что основная силовая характеристика магнитного поля – это индукция. В этом смысле индукция магнитного поля аналогична напряжённости электрического поля. Кроме того, имеется и вспомогательная характеристика магнитного поля, которая называется напряжённостью магнитного поля, и эта величина аналогична электрическому смещению для электрического поля. Для однородной изотропной среды связь между напряжённостью и индукцией магнитного поля имеет следующий вид:

В 1820 ампер установил что два. (3.4)

Здесь m – так называемая магнитная проницаемость среды, о которой мы будем говорить позднее.

Из опытов Эрстеда и Ампера следовало, что магнитное поле создаётся электрическими токами. Французские физики Био и Савар попытались установить закон, определяющий связь между током и создаваемым этим током магнитным полем. Они проделали много опытов, собрали большой фактический материал, но не смогли установить искомую зависимость из своих результатов. Тогда они обратились за помощью к тогда уже известному другому французскому учёному Лапласу. Лаплас проанализировал результаты опытов Био и Савара и предложил формулу, которая сейчас называется законом Био-Савара-Лапласа, и которая вместе с принципом суперпозиции для магнитного поля позволяет определить магнитное поле, создаваемое любым проводником в произвольной точке:

В 1820 ампер установил что два

В 1820 ампер установил что два. (3.5)

Здесь Idl – произведение силы тока на элементарный вектор dl, совпадающий по направлению с током на данном участке проводника, называется элементом тока, r – вектор, проведенный от элемента тока Idl в точку, где вычисляется магнитная индукция. Рис.3.2 поясняет формулу Био-Савара-Лапласа. Из формулы (3.4) и рис.3.2 видно, что направление магнитного поля связано с направлением тока в проводнике правилом В 1820 ампер установил что дваправого винта. Таким образом, вектор магнитной индукции В перпендикулярен плоскости, проходящей через вектор dl и точку, в которой вычисляется магнитная индукция. Чтобы получить индукцию, созданную всем проводником, нужно просуммировать в данной точке магнитные поля, создаваемые каждым элементом тока этого проводника. Если имеется несколько проводников, то необходимо векторно сложить в данной точке магнитные поля, создаваемые каждым проводником в отдельности. Модуль выражения (3.4) определяется как

В 1820 ампер установил что два, (3.6)

где a – угол между векторами dl и r.

Как уже отмечалось, для магнитного поля, так же как и для электрического, справедлив принцип суперпозиции, который утверждает, что магнитное поле, созданное в некоторой точке несколькими токами, равно векторной сумме полей, создаваемых в этой точке каждым из токов в отдельности:

В 1820 ампер установил что два. (3.7)

Формулу (3.7) можно преобразовать следующим образом

В 1820 ампер установил что два. (3.8)

Здесь q – заряд электрона, n – концентрация, В 1820 ампер установил что два– скорость направленного движения электронов в проводнике. Она совпадает по направлению с вектором dl, поэтому мы имеем право в векторном произведении перенести значок вектора с вектора dl на вектор скорости. Мы также воспользовались тем, что сила тока может быть записана как плотность тока, умноженная на площадь поперечного сечения проводника В 1820 ампер установил что два, а также тем, что произведение поперечного сечения проводника на его бесконечно малую длину dl равно элементу объёма dV, а произведение концентрации зарядов на объём равно количеству зарядов в этом объёме N:

В 1820 ампер установил что два. (3.9)

С учётом сделанных замечаний получим индукцию магнитного поля, создаваемого движущимся со скоростью В 1820 ампер установил что двазарядом:

В 1820 ампер установил что два. (3.10)

Необходимо отметить, что формула (3.10) справедлива при условии В 1820 ампер установил что два, где с – скорость распространения света в вакууме.

Из выражения (3.5) видно, что величина магнитного поля обратно пропорциональна квадрату расстояния до элемента тока, создающего это поле. Вспомним, что и основная силовая характеристика электрического поля – напряжённость электрического поля – также обратно пропорциональна квадрату расстояния до источника этого поля – электрического заряда:

В 1820 ампер установил что два. (3.11)

Такая зависимость не является случайной, а отражает глубокую связь между электрическими и магнитными явлениями. В частности, в курсе теоретической физики доказывается, что магнитное взаимодействие токов является следствием закона Кулона и инвариантности заряда. Инвариантность заряда означает, что его величина не зависит от скорости движения заряда. Также доказывается, что электрическое и магнитное поля неразрывно связаны и образуют единое электромагнитное поле. Можно так выбрать систему отсчёта, что магнитное поле будет равно нулю. Этот вывод также следует и из формулы (3.9). Соответственно, также можно выбрать такую систему отсчёта, в которой электрическое поле будет равно нулю. Во всех остальных системах отсчёта будет наблюдаться единое электромагнитное поле, как совокупность электрического и магнитного полей.

В 1820 ампер установил что дваТеперь воспользуемся законом Ампера для расчёта силы взаимодействия, приходящейся на единицу длины двух параллельных токов. В самом деле, пусть у нас есть два параллельных проводника, с расстоянием между ними R, по которым в одном и том же направлении текут токи I1 и I2 (рис.3.3). Ток I1 создаёт в месте нахождения второго проводника магнитное поле B1, и ток I2 создаёт в месте нахождения первого проводника магнитное поле B2. По закону Ампера, на элемент тока I2dl действует сила dF1=I2B1dl. Здесь учтено, что sina=1. На основании формулы (3.14)

В 1820 ампер установил что два.

Окончательно, таким образом, получаем, что

В 1820 ампер установил что два. (3.12)

Аналогичным образом можно показать, что

В 1820 ампер установил что два. (3.13)

Направления сил указаны на рис. 3.1/3. Таким образом, получили, что два параллельных проводника, по которым текут токи в одном и том же направлении, притягиваются друг к другу с одинаковыми силами, приходящимися на единицу длины этих проводников и задаваемыми формулой (3.1). Если токи направлены в разные стороны, то, рассуждая аналогичным образом, можно показать, что проводники будут отталкиваться с силой, также определяемой формулой (3.1).

Источник

В 1820 ампер установил что два

В 1820 ампер установил что два

Прочитайте текст и вставьте на место пропусков слова (словосочетания) из приведённого списка.

В целях исследования взаимодействия проводников с электрическим током А. Ампер провёл ряд экспериментов с параллельно расположенными проводниками. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток ___________________________, то такие проводники притягиваются. И наоборот.

На основании многочисленных опытов учёные сделали вывод, что вокруг магнита, или проводника с током, или электрически заряженной движущейся частицы существует _____________________________________. Взаимодействие постоянных магнитов Ампер объяснил, предположив существование внутри магнита _______________________ электрических токов.

Список слов и словосочетаний

1) в противоположных направлениях

2) в одном направлении

3) магнитные заряды

5) электростатическое поле

В целях исследования взаимодействия проводников с электрическим током А. Ампер провёл ряд экспериментов с параллельно расположенными проводниками. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одном направлении, то такие проводники притягиваются. И наоборот.

На основании многочисленных опытов учёные сделали вывод, что вокруг магнита, или проводника с током, или электрически заряженной движущейся частицы существует магнитное поле. Взаимодействие постоянных магнитов Ампер объяснил, предположив существование внутри магнита молекулярных электрических токов.

Источник

Сила Ампера. Силы взаимодействия двух бесконечно длинных прямых токов. Сила Лоренца. Эффект Холла.

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.

Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).

Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.

Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.

Закон Ампера

Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.

Для прямолинейного проводника сила Ампера

где: \( I \) — сила тока, которая течет в проводнике, \( \overrightarrow \) — вектор индукции магнитного поля, в которое проводник помещен, \( \overrightarrow \) — длина проводника в поле, направление задано направлением тока, \( \alpha \) — угол между векторами \( \overrightarrowи\ \overrightarrow \).

Этой формулой можно пользоваться:

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Магнитное взаимодействие

Французский физик Андре-Мари Ампер в 1820 г. обнаружил, что два проводника, по которым пропущен электрический ток, расположенные параллельно друг другу, притягиваются, если направления токов совпадают, и отталкиваются, если токи направлены в разные стороны. Ампер назвал этот эффект электродинамическим взаимодействием.

В 1820 ампер установил что два

Рис. 1. Опыт Ампера по взаимодействию токов в параллельных проводниках.

Для объяснения этого явления Ампер ввел понятие магнитного поля, которое возникает вокруг любого движущегося электрического заряда. Магнитное поле непрерывно в пространстве и проявляет себя, оказывая силовое воздействие на другие движущиеся электрические заряды.

Предшественники Ампера пытались построить теорию магнитного поля по аналогии с электрическим полем с помощью магнитных зарядов с разными знаками (северным N и южным S). Однако, эксперименты показали, что отдельных магнитных зарядов в природе не существует. Магнитное поле возникает только в результате движения электрических зарядов.

Значение закона Ампера

На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \( 2\cdot <10>^<-7>Н \) на каждый метр длины.

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \( 2\cdot <10>^ <-7>\) Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

ЗаконыФормулы Физика Теория Электричество Закон

§2. Физическая сущность взаимодействия токов

Единицы мощности

Перевод ватты в амперы и наоборот — понятие относительное, потому как это разные единицы измерения. Амперы — это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт — величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.

Связь с другими единицами СИ

Что такое амперы с точки зрения связи между электрическими единицами, можно увидеть на примерах:

Единица измерения индукции

Единица индукции в системе СИ определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока действует сила Ампера величиной 1 Н. Единица называется тесла (Тл).

Единица индукции названа в честь выдающегося сербского инженера, физика Николы Тесла (1856-1943 г.г.). Тесла изобрел электромеханические генераторы, высокочастотный трансформатор. Исследовал свойства токов высокой частоты, изобрел многофазный электродвигатель и системы передачи электроэнергии с помощью переменного тока. Тесла сформулировал основные принципы радиосвязи, изобрел мачтовую антенну для приемки и передачи радиосигналов.

В 1820 ампер установил что два

Рис. 3. Портрет Никола Тесла.

Опыты Ампера

Андре-Мари Амперу повезло родиться в богатой аристократической семье, имевшей поместье недалеко от Лиона. На образование ребенка родители не скупились: учителя, приходившие обучать богатого отпрыска, давали ему знания из самых различных областей. Никто не посмел бы отнести мальчика к разряду недорослей: он рано заинтересовался математическими трудами известных ученых и часами проводил время за чтением фолиантов из обширной отцовской библиотеки. А в 13 лет Андре-Мари написал свою первую работу по математике и отправил ее в Лионскую академию.

Во время Великой Французской буржуазной революции был казнен отец Ампера, и юноше пришлось заняться преподаванием, чтобы заработать. Начав с частных уроков математики, он через некоторое время был приглашен в Центральную школу старинного городка Бурк-ан-Бреса для преподавания физики и химии. Потом был Лионский колледж, а в 1807 году, в возрасте 32 лет, он становится профессором Политехнической школы.

Время расцвета научной деятельности Ампера приходится на 1814—1824 годы и связано, главным образом, с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики. Впрочем, наш рассказ — об открытиях, сделанных ученым в области изучения свойств электричества.

В 1820 году датский физик Ханс Христиан Эрстед случайно заметил, что если по проволоке проходит ток, то отклоняется стрелка лежащего рядом компаса. На заседании академии 4 сентября 1820 года был продемонстрирован опыт Эрстеда. А уже к концу сентября Ампер доложил об открытии сил притяжения между двумя параллельными проводниками с током.

Продолжая эти эксперименты, Ампер обнаружил, что катушка с током действует как постоянный магнит (в дальнейшем, работая в этом направлении, Майкл Фарадей открыл явление электромагнитной индукции). Ампер изобрел устройство со свободно подвешенной иглой, которая отклонялась под действием тока через катушку, причем отклонение было тем больше, чем больше сила тока. Усовершенствование этого устройства привело к появлению измерительного прибора — гальванометра. Но даже работая с его прототипом, Ампер установил, что ток течет в замкнутой электрической цепи. В дальнейшем Кирхгоф и Ом установили законы электрических цепей.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *