В 1820 г этот ученый доказал что электричество порождает магнетизм
Опыты Фарадея с электричеством и магнетизмом
Найдет ли Фарадей скрытую связь между электричеством и магнетизмом?
Наш современный мир, полный энергии и движения, родился во вторник, 3 сентября 1822 года. В этот день Майкл Фарадей в своей лондонской лаборатории склонился над деревянным столом — он готовил опыт. Больше десяти лет он старался нащупать нить, связывающую электричество и магнетизм, и уже потерял счет своим попыткам.
Он поставил магнит в середину заполненной ртутью чаши. Один конец медной проволоки он закрепил над магнитом так, чтобы второй ее конец погрузился в ртуть, и подключил ее к одному из двух контактов, или полюсов, электрической батареи. Без особой надежды на успех Фарадей подключил другую проволоку ко второму полюсу батареи и коснулся ей чаши с ртутью. Невидимый и бесшумный электрический ток потек по ртути, потом по проволоке, подсоединенной к магниту, и обратно к батарее. Электричество породило вокруг этого проводника поле, которое взаимодействовало с собственным полем магнита, и проволока пришла в движение. Она кружила вокруг магнита, и Фарадей понял, что доказал наконец свою теорию. Он преобразовал электричество в движение и изобрел электрический мотор!
Изобретение Фарадея стало первым из череды научных прорывов, которые изменили мир и дали нам электрическую энергию. Без этого у нас не было бы компьютеров, телефонов, автомобилей, самолетов и освещения. Фарадей мог бы стать сказочно богатым человеком, но деньги его не интересовали — радость ему доставляли лишь научные открытия.
Фарадей преуспел и в других областях. Помимо открытий в физике и химии, он изменил преподавание науки, сделав ее популярной и интересной, особенно для молодежи. В 1825 году он организовал рождественские лекции в Королевском институте, которые с тех пор проводятся ежегодно. Фарадей выступал против загрязнения воздуха и много внимания уделял церкви. Он умер в 1867 году, вероятно, от болезней, вызванных применением опасных химикатов в опытах. Но к этому времени он стал одним из знаменитейших людей в стране.
Достижения и вклад в науку
Важные изобретения Фарадея
В ходе своих исследований Фарадей открыл многое из того, что мы используем по сей день.
Майкл Фарадей: магнетизм и электричество
Жизнь Майкла Фарадея началась в одном из бедных районов Лондона 22 сентября 1791 года. Его отец и брат работали кузнецами, но их заработка едва хватало на содержание семьи. В результате бедственного положения, мальчик не получил даже среднего образования, ограничившись лишь местной начальной школой. С момента ее окончания своим обучением Майкл занимался самостоятельно, любил читать книги, увлекался естественными науками, в частности, химией и физикой.
Чтобы облегчить положение семьи, с 13 лет юный Фарадей сам начинает зарабатывать деньги. Сначала работает разносчиком книг и газет, а через год и в самой книжной лавке. Здесь он учится переплетать книги, при этом хозяин магазинчика позволяет Майклу их читать. Мальчик с большим энтузиазмом принимается за изучения всех доступных материалов, пытается применить теоретические знания на практике. Так у него дома появилась целая самодельная лаборатория, в которой Фарадей проводил различные научные опыты.
Свой вклад в обучение Майкла сделал и его старший брат – он не раз оплачивал мальчику посещение лекций по физике, химии и астрономии. Впрочем, на главную лекцию в своей жизни Фарадей попал абсолютно случайно. Один из покупателей в книжной лавке заметил интерес Майкла к науке и подарил ему пригласительные билеты на лекцию Гемфри Дэви. После ее посещения юноша лично сделал переплет своего конспекта и, собравшись с духом, отправил преподавателю. Тот, в свою очередь, одобрительно отнесся к познаниям мальчика в области физики и, немного поразмыслив, пригласил Фарадея работать его ассистентом в Королевском университете.
Начиная с 1813 года, Дэви вместе со своим помощником много путешествует по Европе. Так Фарадею удалось побывать в лучших лабораториях Франции и Италии, а также познакомиться с великими учеными того времени: М. Шеврелем, Ж. Л. Гей-Люссаком, А. Ампером. Вся поездка заняла более двух лет и еще больше разожгла в молодом ученом тягу к науке.
В 1815 году, вернувшись в университет, Майкл Фарадей с головой уходит в работу. Все больше времени он уделяет собственным исследованиям, тем не менее, успевает читать бесплатные лекции для тех, кто, как и он сам, вынужден заниматься самообразованием. Таким образом, ученый вносит свой вклад в популяризацию науки и развивает свой ораторский талант.
В 1820 году в руки Фарадею попадают работы Эрстеда, где речь идет о магнитном действии электрического тока. С этого момента ученый всерьез занимается изучением этого вопроса, и, спустя 10 лет кропотливого труда, приходит к понятию электромагнитной индукции (взаимодействия магнетизма и электротока). Совершить великое открытие ему помогла катушка Генри.
Через год Майкл Фарадей становится техническим смотрителем в Королевском университете. В его обязанности входит надзор за всеми его лабораториями. 1821 год стал знаменательным и в личной жизни Фарадея – он женился и, как утверждают его современники, это был весьма удачный и счастливый брак.
В этом же году он публикует две свои знаменитые работы: о сжижении хлора и об электромагнитных движениях. Первая привела его к преобразованию хлора в жидкое вещество (1824), а во второй речь шла о прототипе электродвигателя. В ней был описан эксперимент с намагниченной стрелкой, которую Фарадей заставил вращаться вокруг магнитного полюса. За этот опыт Майкла безосновательно обвинил в плагиате У. Волластон. При этом наставник Фарадея – Г. Дэви – не поддержал своего ученика, и стал на сторону известного ученого.
Не стал на сторону Фарадея он и в 1824 году. Когда ученого принимали в королевское общество Лондона, Дэви был единственным, кто проголосовал против его членства. Впрочем, это не мешало Дэви называть Фарадея самым главным своим открытием.
В 1825 году Фарадей становится директором лаборатории при Королевском университете, а в 1827 – профессором и возглавляет кафедру химии.
В 1832 году, продолжая исследования, связанные с электрическим током, Фарадей приходит к понятию электролиза. Это явление позволяет пропускать ток через различные растворы, выделяя из них ценные компоненты. Его используют и по сей день в химической промышленности и металлургии. В этот же период Фарадей сделал еще одно важное открытие – смог доказать тождественность всех проявлений электричества.
В 1835 году друзья Фарадея добились у министра казначейства пожизненной пенсии для ученого за его научные открытия. Несмотря на бедственное положение, Фарадей не стал принимать «подачку», согласившись на выплаты только после извинений министра и искреннего признания его заслуг.
В 1840 году Фарадей озвучил теорию о единстве всех существующих энергий. Он утверждал, что все они могут превращаться одна в другую. Таким образом, он пришел к понятию силовых линий. В этот момент ученого постигла беда – он серьезно заболел и на пять лет оставил свою научную деятельность. Поэтому термин «магнитное поле» появился лишь в 1845 году. В это же время Фарадеем были открыты диа- и парамагнетизм.
В 1848 году был открыт так называемый эффект Фарадея, который связывал магнетизм и оптику. По сути, он являлся поляризацией света, его взаимодействием с силовыми линиями магнитного поля. Сам ученый описывал свое открытие следующими словами: «я намагнитил свет».
Отступившая на время болезнь вновь вернулась в 1855 году. Фарадей все чаще страдает головными болями, начинает терять память. При этом он до последнего продолжает заниматься наукой, тщательно конспектируя свои мысли в лабораторный журнал.
Майкл Фарадей умер 25 августа 1867 года в Хэмптон-Корте, но его открытия живы и поныне. Без него не существовало бы таких неотъемлемых вещей современной жизни, как электричество, компьютер, алюминиевые ложки, медные провода, нержавеющая сталь, электродвигатель и пр. В его честь названа одна из самых престижных премий за достижения в науке – медаль Фарадея.
Открытие Эрстеда
Электрический ток порождает магнитное поле.
Внешне электричество и магнетизм проявляют себя совершенно по-разному, но на самом деле они теснейшим образом связаны между собой. Заслуга окончательного слияния двух этих понятий принадлежит Джеймсу Кларку Максвеллу, разрабатывавшему единую теорию электромагнитных волн с 1850-х годов и до самой его безвременной кончины в 1879 году. Однако появлению уравнений Максвелла предшествовала целая череда открытий первой половины XIX века, начало которой положил датский физик Ханс Кристиан Эрстед.
Эрстеду были свойственны два качества, которые принято считать помехой для успешной карьеры исследователя, а именно, страстное увлечение философией и сильное желание донести науку до понимания масс. В начале своей стажировки в Париже, например, он серьезно подмочил свою научную репутацию, яростно защищая взгляды немецких философов-обскурантистов. На этом фоне и его доводы в пользу наличия связи между электричеством и магнетизмом были восприняты, по крайней мере, современниками, как очередное мистическое пустозвонство. Эрстед утверждал, например, что магнетизм возникает в результате неизбежного конфликта между положительным и отрицательным аспектом электричества.
Чем бы ученый ни руководствовался, но в 1820 году в Копенгагенском университете состоялась его лекция с демонстрацией, на которой он использовал только что изобретенную электрическую батарею в качестве источника тока. На этой лекции Эрстед продемонстрировал, что под воздействием поднесенного на близкое расстояние проводника магнитная стрелка компаса отклоняется. Это было первое наглядное и неоспоримое подтверждение существования прямой связи между электричеством и магнетизмом. Открытие Эрстеда буквально вдохновило целый ряд ученых, прежде всего Ампера (см. Закон Ампера), а также Био и Савара (см. Закон Био—Савара), на проведение новых экспериментов с целью определения математических закономерностей выявленной связи и, в конечном итоге, проложило дорогу к теории электромагнетизма Максвелла.
За преданность Эрстеда делу популяризации науки и публичную демонстрацию только что открытого явления Американская ассоциация учителей физики назвала премию, присуждаемую учителю года, «медалью Эрстеда».
Датский физик. Родился в Рудкебинге в семье аптекаря. Начальное образование состояло преимущественно в изучении немецкого в приемной семье, в которой он какое-то время воспитывался, после чего Эрстед с одиннадцатилетнего возраста стал помогать отцу в аптеке, где на практике освоил аптечное дело. После переезда семьи в Копенгаген поступил в местный университет, в 1797 году получил диплом фармацевта, а еще через два года защитил докторскую диссертацию. Продолжил свое образование, переезжая из города в город и стажируясь в ведущих европейских лабораториях, где и познакомился с последними исследованиями электрических и магнитных явлений. После нескольких лет чтения публичных научно-популярных лекций в 1806 году получил преподавательскую должность в родном университете. В 1820 году Эрстед сделал своё уникальное открытие, наглядно демонстрирующее связь между электричеством и магнетизмом. С 1829 года работал директором Копенгагенского политехнического института.
Физик Ханс Эрстед обнаружил магнитное действие электричества

В 1820 году датский профессор физики 43-летний Ханс Кристиан Эрстед (дат. Hans Christian Ørsted, 1777—1851) демонстрировал на лекции несложный опыт по электричеству. При демонстрации он обнаружил, что электрический ток, проходящий по проволоке, оказывает воздействие на магнитную стрелку компаса, находящуюся под ней. По одной из версий это произошло 15 февраля 1820 года.
Это открытие не было случайностью. Научная деятельность Эрстеда построена на убежденности связи между электричеством и магнетизмом. В некоторых источниках даже указывается, что Эрстед якобы всюду носил с собой магнит, чтобы непрерывно думать о связи магнетизма и электричества.
Продемонстрировав, как магнитная стрелка поворачивается под действием тока, протекающего по проводу расположенного вблизи компаса, Эрстед открыл еще и вращающий момент сил, до этого науке неизвестный.
Новость об открытии Эрстедом взаимодействия электрического поля и магнита быстро облетела всех физиков. Это дало толчок к выдвижению и развитию новых гипотез и объединило развивающиеся параллельно учения об электричестве и магнетизме.
Уже в июне 1820 года Эрстед печатает на латинском языке небольшую работу под заголовком: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку».
После своего открытия Эрстед стал всемирно признанным учёным. Он был избран членом многих наиболее авторитетных научных обществ: Лондонского Королевского общества, Парижской Академии, а в 1830 году его избрали почетным членом Петербургской академии наук.
Он продолжил заниматься наукой — в 1823 году независимо от Ж.Фурье открыл термоэлектрический эффект и создал первый термоэлемент. Изучал сжимаемость и упругость жидкостей и газов, изобрёл пьезометр, пытался обнаружить электрические эффекты под действием звука. Занимался он и молекулярной физикой.
Кто изобрел электричество?
Бенджамин Франклин получает все заслуги в открытии электричества, но все, что он сделал, это установил связь между молнией и электричеством. Шарль Франсуа Дюфе, Луиджи Гальвани, Алессандро Вольта, Майкл Фарадей, Томас Алва Эдисон и Никола Тесла внесли значительный вклад в развитие и коммерциализацию электричества.
Электричество повсюду вокруг нас: светильники, вентиляторы, компьютеры, мобильные телефоны и бесчисленное множество других устройств. В современном мире от этого практически невозможно убежать. Даже пытаясь убежать от электричества, вы найдете его по всей природе, от синапсов внутри человеческого тела до молнии во время грозы.
Но знаете ли вы, кто открыл электричество? Вообще-то, это довольно сложный вопрос. Большинство людей отдают должное только одному человеку (Бенджамину Франклину), что вроде как несправедливо.
Многие другие ученые использовали эксперименты Франклина для изучения электричества, и некоторые из них смогли изобрести различные формы электричества. Давайте копнем глубже и выясним, кто были эти ученые и каков их вклад.
Электричество 2600 лет назад
Один из инструментов, обнаруженных в археологических раскопках близ Багдада, напоминает электрохимическую ячейку
Примерно в 600 году до нашей эры греческий математик Фалес Милетский обнаружил, что трение меха о Янтарь вызывает притяжение между ними. Более поздние наблюдения доказали, что это притяжение было вызвано дисбалансом электрических зарядов, который называется статическим электричеством.
Археологи также обнаружили доказательства того, что древние люди могли экспериментировать с электричеством. В 1936 году они нашли глиняный горшок с железным прутом и медной пластиной. Он похож на электрохимический (гальванический) элемент.
Неясно, для чего использовался этот инструмент, но он пролил некоторый свет на тот факт, что древние люди, возможно, изучали ранние формы батарей задолго до того, как мы это знаем.
Томас Браун использовал слово «электричество» в 1646 году
В 1600 году английский физик Уильям Гилберт написал книгу под названием De Magnete, в которой он объяснил, как статическое электричество генерируется трением янтаря. Однако он не понимал, что электрический заряд универсален для всех материалов.
Поскольку Гилберт изучал статическое электричество с помощью янтаря, а янтарь по-гречески называют «Электрум», он решил назвать его действие электрической силой. Он также изобрел электроскоп (известный как «versorium» Гилберта) для обнаружения присутствия электрического заряда на теле.
Шарль Франсуа Дюфе открыл типы электрических зарядов
Дальнейшие исследования проводились многими учеными. Отто фон Герике, например, изобрел примитивную форму фрикционной электрической машины в 1663 году. Стивен Грей различал проводимость и изоляцию и открыл явление, называемое электростатической индукцией, в 1729 году.
Один из основных вкладов начала 17 века сделал французский химик Шарль Франсуа Дюфе. Он открыл два типа электричества: стекловидное и смолистое (которое в настоящее время известно как положительный и отрицательный заряд соответственно).
Он также обнаружил, что объекты с одинаковым зарядом притягиваются друг к другу, а объекты с противоположным зарядом отталкиваются. Он также прояснил некоторые популярные заблуждения того времени, например, что электрические свойства объекта зависят от его цвета.
Бенджамин Франклин доказал, что молния имеет электрическую природу
В середине XVIII века Бенджамин Франклин широко изучал и проводил многочисленные эксперименты, чтобы понять электричество. В 1748 году он построил электрическую батарею, поместив несколько стеклянных листов, зажатых между свинцовыми пластинами. Он также открыл принцип сохранения заряда.
Как он и ожидал, змей собрал немного электрического заряда из грозовых облаков, который затем потек по веревке, сотрясая его. Этот эксперимент доказал, что молния действительно была электрической по своей природе.
Луиджи Гальвани открыл биоэлектромагнетизм в 1780-х годах
Итальянский физик и биолог был пионером биоэлектромагнетизма. В 1780 году он провел несколько экспериментов на лягушках и обнаружил, что электричество является средой, через которую нейроны передают сигналы мышцам.
Алессандро Вольта изобрел электрическую батарею в 1800 году
Другой итальянский физик по имени Алессандро Вольта обнаружил, что некоторые химические реакции могут производить постоянный электрический ток. Он построил электрическую батарею, для производства непрерывного потока электрического заряда. Она была сделана из чередующихся слоев меди и цинка.
Вольта также различал электрический потенциал (V) и заряд (Q), описывая, что они пропорциональны для данного объекта. Это то, что мы называем законом емкости Вольта. За эту работу единица измерения электрического потенциала SI (вольт) была названа в его честь.
Исследования, проведенные Вольтом, привлекли большое внимание и побудили других ученых провести аналогичные исследования, что в конечном итоге привело к развитию нового раздела физической химии, называемого электрохимией.
Немецкий физик Георг Симон Ом дополнительно изучил электрохимическую ячейку Вольта и обнаружил, что электрический ток прямо пропорционален напряжению (разности потенциалов), приложенному к проводнику. Эта связь называется законом Ома.
Ханс Кристиан Эрстед обнаружил, что электричество создает магнитные поля
Ханс Кристиан Эрстед
В начале 19 века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. В 1820 году он опубликовал свои открытия, описывая, как стрелка компаса может отклоняться под действием электрического тока.
Работы Эрстеда вдохновили французского физика Андре-Мари Ампера на разработку физико-математической теории, которая могла бы лучше объяснить связь между электричеством и магнетизмом. Он сформировал математическую формулу для представления магнитных сил между объектами, несущими ток. Для этой работы в его честь была названа единица измерения электрического тока (ампер).
В 1820-х годах Ампер изобрел многочисленные приборы, в том числе электромагнит (электромагнит, создающий управляемое магнитное поле) и электрический телеграф (система обмена текстовыми сообщениями «точка-точка»).
Майкл Фарадей сделал электричество практичным для использования в технологиях
Майкл Фарадей, около 70 лет
Майкл Фарадей заложил основы концепции электромагнитного поля. Он обнаружил, что на световые лучи может влиять магнетизм. Он изобрел электромагнитные вращательные устройства, которые легли в основу технологии электродвигателей.
В 1831 году Фарадей разработал электрическую динамомашину-машину, которая могла непрерывно преобразовывать вращательную механическую энергию в электрическую, что сделало возможным производство электричества.
В 1832 году Фарадей провел серию экспериментов по исследованию поведения электричества. Он пришел к выводу, что категоризация различных «типов» электричества была иллюзорной. Вместо этого он предложил, что существует только один «тип» электричества, и изменение таких параметров, как ток и напряжение (количество и интенсивность), приведет к созданию различных групп явлений.
Джеймс Клерк Максвелл сформулировал теорию электромагнитного излучения
В 1873 году шотландский ученый Джеймс Клерк Максвелл начал разрабатывать уравнения, которые могли бы точно описать электромагнитное поле. Он предположил, что электрические и магнитные поля движутся как волны со скоростью света.
Генрих Рудольф Герц окончательно доказал эту теорию, и Гульельмо Маркони использовал эти волны для разработки радио.
Томас Эдисон коммерциализировал электричество
В 1879 году Томас Альва Эдисон изобрел практичную лампочку, которая прослужит долго, прежде чем перегореть. Его следующей задачей была разработка электрической системы, которая могла бы обеспечить людей реальным источником энергии для питания этих ламп.
В 1882 году он построил первую электростанцию в Лондоне, чтобы вырабатывать электроэнергию и переносить ее в дома людей. Несколько месяцев спустя он создал еще одну электростанцию в Нью-Йорке для обеспечения электрическим освещением нижней части острова Манхэттен. Около 85 потребителей получили достаточно энергии, чтобы зажечь 5000 ламп.
На заводе использовались возвратно-поступательные паровые двигатели для включения генераторов постоянного тока. Но так как это было распределение постоянного тока, зона обслуживания была ограничена падением напряжения в фидерах.
Никола Тесла изобрел переменный ток
Поворотный момент в электрической эре наступил через несколько лет, когда Никола Тесла приехал в Нью-Йорк, чтобы работать на Эдисона. Он покинул Edison Machine Works через шесть месяцев из-за невыплаченных бонусов, которые, по его мнению, он заработал.
Вскоре после ухода из компании Тесла обнаружил новый тип двигателя переменного тока и технологию передачи электроэнергии. Он объединился с Джорджем Вестингаузом, чтобы запатентовать систему переменного тока, чтобы обеспечить страну электроэнергией высочайшего качества.
Энергетическая система, изобретенная Теслой, быстро распространилась в США и Европе благодаря своим преимуществам в дальней высоковольтной передаче. Первая гидроэлектростанция Теслы в Ниагарском водопаде могла транспортировать электроэнергию более чем на 200 квадратных миль. В отличие от этого, эдисоновская электростанция постоянного тока могла транспортировать электричество только в пределах одной мили.
Сегодня переменный ток вырабатывается большинством электростанций и используется почти всеми системами распределения электроэнергии. Общее мировое валовое производство электроэнергии в 2019 году составило 27 644 ТВтч.
Генрих Рудольф Герц наблюдал фотоэлектрический эффект в 1887 году
Генрих Рудольф Герц
Пока Тесла был занят изобретением и распределением переменного тока, Генрих Герц проводил серию экспериментов по пониманию электромагнитных волн. В 1887 году он наблюдал фотоэлектрический эффект, явление, при котором электроны испускаются, когда электромагнитное излучение (например, свет) попадает на материал.
В 1905 году Альберт Эйнштейн опубликовал «закон фотоэлектрических эффектов», выдвинув гипотезу о том, что световая энергия переносится дискретными квантованными пакетами. Это был решающий шаг в развитии квантовой механики. За эту работу Эйнштейн был удостоен Нобелевской премии по физике 1921 года.
Фотоэлектрический эффект используется в фотоэлементах, обычно встречающихся в солнечных батареях. Эти фотоэлементы вырабатывают напряжение и подают электрический ток, когда на них светит солнечный свет (или свет с определенной длиной волны).
К концу 2019 года во всем мире было установлено в общей сложности 629 гигаватт солнечной энергии. Это число будет увеличиваться в ближайшие годы, поскольку многие страны и территории переходят на возобновляемые источники энергии, чтобы уменьшить воздействие производства электроэнергии на окружающую среду.
И поэтому было бы неправильно отдать должное только одному человеку за то, что он открыл для себя электричество. В то время как идея электричества существовала тысячи лет, когда пришло время ее научного и коммерческого изучения, несколько великих умов работали над различными подмножествами этой проблемы.












