В 1820г ампер установил что два параллельных проводника с током
Закон Ампера
Движение электрических зарядов приводит к возникновению магнитных полей.
Одним из главных направлений развития естественной науки в начале XIX века стало растущее осознание взаимосвязей между, казалось бы, совершенно не связанными между собой феноменами электричества и магнетизма. Ханс Кристиан Эрстед (см. Открытие Эрстеда) экспериментально установил, что провод, по которому течет электрический ток, отклоняет магнитную стрелку компаса. Андре-Мари Ампер так заинтересовался этим явлением, что принялся за углубленное экспериментальное и математическое исследование взаимосвязи между электричеством и магнетизмом. В результате и был сформулирован закон, носящий теперь его имя.
Ключевой эксперимент, проведенный Ампером, достаточно прост. Он положил два прямых провода бок о бок и пропускал по ним электрический ток. Выяснилось, что между проводами действует сила притяжения или отталкивания (в зависимости от направления тока. — Прим. переводчика). Конечно, не надо быть семи пядей во лбу, чтобы прийти к такому выводу. Ведь при достаточно сильном токе провода действительно притягиваются или отталкиваются так, что это видно невооруженным глазом. Но Ампер путем тщательных измерений сумел определить, что сила механического взаимодействия пропорциональна силам токов и падает по мере увеличения расстояния между ними. Исходя из этого Ампер решил, что наблюдаемая сила объясняется возникновением магнитного поля.
Рассуждал Ампер примерно так. Электрический ток в одном проводе производит магнитное поле, конфигурация силовых линий которого представляет собой концентрические круги вокруг сечения провода. Второй провод попадает в область воздействия этого магнитного поля, и в нем возникает сила, действующая на движущиеся электрические заряды. Эта сила передается атомам металла, из которого сделан провод, в результате чего провод и изгибается. Таким образом, эксперимент Ампера демонстрирует нам два взаимодополняющих факта о природе электричества и магнетизма: во-первых, любой электрический ток порождает магнитное поле; во-вторых, магнитные поля оказывают силовое воздействие на движущиеся электрические заряды. Первое из этих утверждений сегодня и называют законом Ампера, и закон этот тесно связан с законом Био—Савара. Именно эти два закона затем легли в основу теории электромагнитного поля (см. Уравнения Максвелла).
Если же трактовать закон Ампера чуть шире, то мы поймем, что находящийся в пространстве замкнутый электрический контур формирует вокруг себя магнитное поле, интенсивность которого пропорциональна силе протекающего через контур электрического тока и площади внутри контура. То есть, например, если вокруг отдельного прямолинейного проводника с током формируется магнитное поле, индукция которого равна B на расстоянии r от проводника, то при замыкании такого проводника в круговой контур, путём сложения этих полей внутри контура, образованного замкнутым проводником с током, то есть, выражаясь научным языком, путём интегрирования, мы получим значение интенсивности магнитного поля внутри контура 2рrB, где 2рr — площадь кругового контура. По закону Ампера эта величина и будет пропорциональна силе тока в контуре.
На самом деле вы не раз сталкивались с упоминанием имени Андре-Мари Ампера, возможно сами того не сознавая. Взгляните на любой электроприбор у вас дома — и вы на нем обнаружите его электротехнические характеристики, например: «
220V 50Hz 3,2А». Это значит, что прибор рассчитан на питание от стандартной электросети переменного тока напряжением 220 вольт с частотой 50 герц, а сила потребляемого прибором тока составляет 3,2 ампера. Единица силы тока ампер (сокращенно — А) как раз и названа в честь ученого.
Официальное определение единицы выводится из исходного эксперимента, проделанного Ампером. Это сила тока, протекающего в каждом из двух параллельных прямолинейных проводников, помещенных в вакууме на расстояние одного метра друг от друга, вызывающая между двумя проводниками силу взаимодействия, равную 2×10 –7 ньютона на метр длины. (Все научные определения единиц измерения даются в такой строгой формулировке. Причем речь здесь идет о так называемых «идеальных проводниках» бесконечной длины и ничтожно малого поперечного сечения.) Кстати, при силе тока в 1 ампер в любой точке проводника каждую секунду протекает около 6×10 23 электронов.
Магнитного поля
И Био-Савара-Лапласа. Принцип суперпозиции для
Магнитное поле и его характеристики. Законы Ампера


dF = I [d l,B]. (3.2)
Квадратные скобки в формуле (3.2) обозначают векторное произведение. Модуль векторного произведения (3.2) определяется как
где a – угол между векторами dl и B. Здесь же отметим, что направление силы перпендикулярно плоскости, в которой лежат перемножаемые векторы и определяется правилом правого винта для определения направления векторного произведения.
Так как магнитное поле является силовым, то его можно графически изобразить при помощи линий магнитной индукции, касательная к которым в каждой точке совпадает с направлением индукции магнитного поля в этой же точке. Подчеркнём, что основная силовая характеристика магнитного поля – это индукция. В этом смысле индукция магнитного поля аналогична напряжённости электрического поля. Кроме того, имеется и вспомогательная характеристика магнитного поля, которая называется напряжённостью магнитного поля, и эта величина аналогична электрическому смещению для электрического поля. Для однородной изотропной среды связь между напряжённостью и индукцией магнитного поля имеет следующий вид:

Здесь m – так называемая магнитная проницаемость среды, о которой мы будем говорить позднее.
Из опытов Эрстеда и Ампера следовало, что магнитное поле создаётся электрическими токами. Французские физики Био и Савар попытались установить закон, определяющий связь между током и создаваемым этим током магнитным полем. Они проделали много опытов, собрали большой фактический материал, но не смогли установить искомую зависимость из своих результатов. Тогда они обратились за помощью к тогда уже известному другому французскому учёному Лапласу. Лаплас проанализировал результаты опытов Био и Савара и предложил формулу, которая сейчас называется законом Био-Савара-Лапласа, и которая вместе с принципом суперпозиции для магнитного поля позволяет определить магнитное поле, создаваемое любым проводником в произвольной точке:

Здесь Idl – произведение силы тока на элементарный вектор dl, совпадающий по направлению с током на данном участке проводника, называется элементом тока, r – вектор, проведенный от элемента тока Idl в точку, где вычисляется магнитная индукция. Рис.3.2 поясняет формулу Био-Савара-Лапласа. Из формулы (3.4) и рис.3.2 видно, что направление магнитного поля связано с направлением тока в проводнике правилом 

где a – угол между векторами dl и r.
Как уже отмечалось, для магнитного поля, так же как и для электрического, справедлив принцип суперпозиции, который утверждает, что магнитное поле, созданное в некоторой точке несколькими токами, равно векторной сумме полей, создаваемых в этой точке каждым из токов в отдельности:

Формулу (3.7) можно преобразовать следующим образом

Здесь q – заряд электрона, n – концентрация, 


С учётом сделанных замечаний получим индукцию магнитного поля, создаваемого движущимся со скоростью 

Необходимо отметить, что формула (3.10) справедлива при условии 
Из выражения (3.5) видно, что величина магнитного поля обратно пропорциональна квадрату расстояния до элемента тока, создающего это поле. Вспомним, что и основная силовая характеристика электрического поля – напряжённость электрического поля – также обратно пропорциональна квадрату расстояния до источника этого поля – электрического заряда:

Такая зависимость не является случайной, а отражает глубокую связь между электрическими и магнитными явлениями. В частности, в курсе теоретической физики доказывается, что магнитное взаимодействие токов является следствием закона Кулона и инвариантности заряда. Инвариантность заряда означает, что его величина не зависит от скорости движения заряда. Также доказывается, что электрическое и магнитное поля неразрывно связаны и образуют единое электромагнитное поле. Можно так выбрать систему отсчёта, что магнитное поле будет равно нулю. Этот вывод также следует и из формулы (3.9). Соответственно, также можно выбрать такую систему отсчёта, в которой электрическое поле будет равно нулю. Во всех остальных системах отсчёта будет наблюдаться единое электромагнитное поле, как совокупность электрического и магнитного полей.


Окончательно, таким образом, получаем, что

Аналогичным образом можно показать, что

Направления сил указаны на рис. 3.1/3. Таким образом, получили, что два параллельных проводника, по которым текут токи в одном и том же направлении, притягиваются друг к другу с одинаковыми силами, приходящимися на единицу длины этих проводников и задаваемыми формулой (3.1). Если токи направлены в разные стороны, то, рассуждая аналогичным образом, можно показать, что проводники будут отталкиваться с силой, также определяемой формулой (3.1).
Физика. 10 класс
§ 27. Действие магнитного поля на проводник с током. Взаимодействие проводников с током
Явления взаимодействия одноимённых и разноимённых электрических зарядов напоминают явления отталкивания одноимённых полюсов и притяжения разноимённых полюсов магнитов ( рис. 136 ). Электрические взаимодействия осуществляются посредством электрических полей, а чем обусловлены магнитные взаимодействия и чем определяются магнитные свойства тел?
Магнитное поле. То, что магниты взаимодействуют друг с другом, что распиленный пополам магнит превращается в два магнита, а железо при соприкосновении с магнитом намагничивается, было установлено достаточно давно. Гораздо позже обнаружили связь между электрическими и магнитными явлениями, хотя намагничивание железных предметов, перемагничивание стрелки компаса во время грозовых электрических разрядов и многие другие наблюдения и опыты заставляли учёных задуматься над этим. Первыми эту связь исследовали в 1820 г. датский физик Ганс Христиан Эрстед ( 1777–1851 ) и уже известный вам французский физик и математик Андре-Мари Ампер.
Эрстед обнаружил, что магнитная стрелка, расположенная вблизи проводника, поворачивалась на некоторый угол при прохождении по проводнику электрического тока ( рис. 137 ). Открытие Эрстеда позволило Амперу сделать вывод, что магнитные свойства любого тела определяются замкнутыми электрическими токами, циркулирующими внутри этого тела и получившими название «амперовы токи» или «молекулярные токи» ( рис. 138 ). Это означало, что магнитное взаимодействие обусловлено не особыми магнитными зарядами, а движением электрических зарядов — электрическим током.
Взаимодействие проводника с током и магнитной стрелки в опыте Эрстеда является взаимодействием электрического тока проводника с «амперовыми токами» в магнитной стрелке (гипотеза Ампера). Это взаимодействие осуществляется посредством магнитного поля.
Магнитное поле – особая форма материи, создаваемая движущимися относительно определённой инерциальной системы отсчёта электрическими зарядами или переменными электрическими полями.
Опыты свидетельствуют, что магнитное поле возникает при движении любых электрических зарядов. Поскольку скорость движения заряда зависит от выбора системы отсчёта, магнитное поле одного и того же заряда в разных системах отсчёта различное. Если по отношению к определённой инерциальной системе отсчёта электрический заряд покоится, то в этой системе отсчёта он создаёт только электростатическое поле. Электрический заряд, движущийся относительно данной инерциальной системы отсчёта, создаёт в ней не только электрическое поле, но и магнитное, которые являются компонентами единого электромагнитного поля.
Посредством магнитного поля осуществляется взаимодействие между подвижными электрическими зарядами (а также магнитами). При этом каждый движущийся в данной инерциальной системе отсчёта электрический заряд создаёт в окружающем пространстве магнитное поле. Это поле действует некоторыми силами на любые другие движущиеся электрические заряды, а также находящиеся в нём магниты.
Таким образом, о существовании магнитного поля можно судить по наличию силы, действующей на электрический заряд, движущийся относительно выбранной инерциальной системы отсчёта, или находящийся в этом поле магнит.
Магнитная стрелка, расположенная под медным проводником, поворачивается на некоторый угол при прохождении по нему электрического тока. Будет ли стрелка поворачиваться, если медный проводник заменить водным раствором щёлочи, помещённым в тонкую стеклянную трубку?
Интересно знать
Современные научные представления не отвергают, а наоборот, предсказывают частицы с магнитным зарядом — магнитные монополи. однако такие частицы пока экспериментально не наблюдали.
В 1820г ампер установил что два параллельных проводника с током
Компания ЭТМ запись закреплена
Освежим школьные знания и вспомним о важнейших открытиях в электромагнетизме, а именно об Опыте Эрстеда, силах Ампера и Лоренца. Поможет нам в этом видеоролик, подготовленный компанией EKF.
В 1820 году Ханс Кристиан Эрстед своим экспериментом впервые доказал воздействие электрического тока на магнит, а также заметил, что линии магнитного поля направлены перпендикулярно относительно проводника, по которому протекает ток.
В том же 1820 году Андре Мари Ампер установил, что два параллельных проводника притягиваются друг к другу, если ток в них течет в одном направлении. Силу, которая при этом воздействует на проводники, назвали силой Ампера.
А в 1892 Хендрик Антон Лоренц вывел выражение силы действующий на точечную заряженную частицу, находящуюся в электромагнитном поле.
Мне больше нравятся опыты французского физика Жан-Антуан Нолле. Они намного интереснее. )))
Для тех, кто не знает: Скорость электрического тока почти равна скорости света. В 1746 году, когда это ещё не было известно, французский священник и физик Жан-Антуан Нолле захотел измерить скорость тока экспериментально. Он расставил 200 монахов, соединённых друг с другом железными проводами, по окружности длиной свыше полутора километров, а затем разрядил в эту цепь батарею из лейденских банок, изобретённых годом ранее. Все монахи среагировали на ток в одно мгновение, что убедило Нолле в очень высоком значении искомой величины.
Хороший физик. И опыты у него интересные.
Валерий, а еще скорость перемещения отдельно взятого электрона очень большая, но при этом его скорость перемещния ВДОЛЬ проводника мала, и в принципе не определима.
Ну то есть представим что в точке А в это мгновение сидит себе электрон спокойненько, подёргивается от теплового воздействия, да еще от разных других, которые передают ему определенную энергию, тут вдрог замкнули вы рубильник, да напряжение подали. Электрон тут же сорвется и полетит, но куда он полетит? На другую орбиталь или же к другому атому? Сколько раз он столкнется и будет ли он двигаться в том же направлении? Да он никогда может и не «доползти» до другого конца проводника.
Но в целом скорость электического ТОКА, читайть как ПОТОКА, ДВИЖЕНИЯ — мгновенна.
Как в старом анекдоте про скорость включения лампочки и понос у Вовочки
Закон Ампера
в раздел тоэ

Взаимодействия проводников с током:
(ниже рассмотрим три варианта формул силы взаимодействия токов по Закону Ампера)
Вариант 1
Выражение для силы 



Если ток течёт по тонкому проводнику, то 


Сила 




Вариант 2
Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.
F – сила взаимодействия двух параллельных проводников,
I1, I2 – величины токов в проводниках,
∆ℓ − длина проводников,
r – расстояние между проводниками.
Вариант 3
Закон Ампера определяет силу, действующую со стороны магнитного поля на проводник с током. Эта сила называется силой Ампера и равна:
dF= I[dl B]
Направление силы определяется по правилу левой руки:
Если ладонь левой руки расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые пальцы указывали направление тока, то отставленный большой палец будет показывать направление силы Ампера.

Рис. 2
Модуль силы Ампера равен: dF = IBdlsin(dl B).
Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два параллельных проводника с токами I1, I2, которые находятся в среде с магнитной проницаемостью m, на расстоянии R (рис.2). Каждый из проводников создаёт магнитное поле, которое действует по закону Ампера на другой проводник с током. Направление вектора В1 определяется по правилу правого винта, а модуль его по формуле:
В1 = 
Направление силы dF1, с которой магнитное поле тока I1 действует на элемент dl тока I2, определяется по правилу левой руки, а модуль силы равен:
dF1 = I2 В1dl = 
т. е. dF1 = dF2 = dF.
Два параллельных элемента тока притягиваются друг к другу с силой dF. Антипараллельные токи отталкиваются.
Вывод:

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой 2∙10-7 Ньютона.
Статья ещё не готова.
в раздел тоэ
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.











