В семье 2 детей какова вероятность что старший ребенок мальчик
Основные формулы теории вероятностей
Задача 1. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?
Решение. Событие A= <вынуты пуговицы одного цвета>можно представить в виде суммы 






Задача 2. Среди сотрудников фирмы 28% знают английский язык, 30% – немецкий, 42% – французский; английский и немецкий – 8%, английский и французский – 10%, немецкий и французский – 5%, все три языка – 3%. Найти вероятность того, что случайно выбранный сотрудник фирмы: а) знает английский или немецкий; б) знает английский, немецкий или французский; в) не знает ни один из перечисленных языков.
Решение. Обозначим через A, B и С события, заключающиеся в том, что случайно выбранный сотрудник фирмы владеет английским, немецким или французским соответственно. Очевидно, доли сотрудников фирмы, владеющих теми или иными языками, определяют вероятности этих событий. Получаем:
Задача 3.В семье – двое детей. Какова вероятность, что старший ребенок – мальчик, если известно, что в семье есть дети обоего пола?
Решение. Пусть А=<старший ребенок – мальчик>, B=<в семье есть дети обоего пола>. Будем считать, что рождение мальчика и рождение девочки – равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки – Д, то пространство всех элементарных исходов состоит из четырех пар: 
Задача 4. Мастер, имея 10 деталей, из которых 3 – нестандартных, проверяет детали одну за другой, пока ему не попадется стандартная. Какова вероятность, что он проверит ровно две детали?
Решение. Событие А= <мастер проверил ровно две детали>означает, что при такой проверке первая деталь оказалась нестандартной, а вторая – стандартная. Значит, 




Задача 5.В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут белый шар, если из каждого ящика вынуто по одному шару.
Решение. Событие A= <хотя бы из одного ящика вынут белый шар>можно представить в виде суммы 








Задача 6. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студентов, а третий — 21 студента (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.
Решение. Обозначим через 



Пусть событие A=<слабо подготовившийся студент сдал экзамен>. Тогда снова в силу условия задачи



По формуле полной вероятности получаем:

Задача 7. Фирма имеет три источника поставки комплектующих – фирмы А, B, С. На долю фирмы А приходится 50% общего объема поставок, В – 30% и С – 20%. Из практики известно, что среди поставляемых фирмой А деталей 10% бракованных, фирмой В – 5% и фирмой С – 6%. Какова вероятность, что взятая наугад деталь окажется годной?
Решение. Пусть событие G – появление годной детали. Вероятности гипотез о том, что деталь поставлена фирмами А, B, С, равны сответственно Р(А)=0,5, Р(В)=0,3, Р(С)=0,2. Условные вероятности появления при этом годной детали равны Р(G|A)=0,9, P(G|B)=0,95, P(G|C)=0,94 (как вероятности противоположных событий к появлению бракованной). По формуле полной вероятности получаем:
Задача 8 (см. задачу 6). Пусть известно, что студент не сдал экзамен, т.е. получил оценку «неудовлетворительно». Кому из трех преподавателей вероятнее всего он отвечал?
Решение. Вероятность получить «неуд» равна 



Отсюда следует, что, вероятнее всего, слабо подготовившийся студент сдавал экзамен третьему экзаменатору.
Дата добавления: 2015-01-29 ; просмотров: 316 ; Нарушение авторских прав
Теория Вероятности: две простые и интересные задачи
Как утверждал Цицерон: «Вероятностные знания — вот предел человеческого разумения». Действительно, как показывает мой опыт именно с этим разделом математики связаны наибольшие затруднения у студентов, да и не только, даже у отцов основателей этой науки нередко возникали проблемы с пониманием некоторых моментов.
Рассмотрим две задачи, для начало попробуйте решить их самостоятельно, ниже я приведу решение и пояснения к ним.
Задача 1.
Какова вероятность того, что в семье из двух детей оба ребенка будут мальчиками?
Задача 2.
В семье из двух детей младший ребенок мальчик, какова вероятность того, что старший тоже мальчик?
Давай те рассмотрим решения данных задач, но для начала вспомним элементарное определение вероятности.
Вероятностью наступления события А называется отношение n — числа благоприятных исходов, к m — общему числу исходов.
Каково множество всех исходов для первой задачи?
1 – M M
2 – М Д
3 – Д М
4 – Д Д
m=4
Каково множество благоприятных исходов?
1 – М М
n=1
Нетрудно видеть, что ответ для первой задачи будет P(A)=n/m =1/4
Для второй задачи множество исходов будет составлять:
1 – Д М
2 – М М
m=2
Множество благоприятных событий всего одно М и М. Итого: ответ для второй задачи будет P(b)=n/m=1/2
Резюме.
Задачи, казалось бы, имеют очень схожий смысл, но необходимо внимательно относиться к условиям. Подобного типа задачи вызывают «ужас» у многих людей тем, что после оглашения результатов складывается ощущение, что в них был заложен подвох. Хочу закончить простыми советами:
1) Пытайтесь дробить задачу на простые части, в данном случае это определение множеств (благоприятных и всех).
2) Перепроверяйте себя, ответ который пришел в вашу голову за первые секунды скорее всего не верный.
3) Верьте в себя.
Условная вероятность, закон умножения вероятностей
Условная вероятность события В – это вероятность события В, найденная при условии, что событие А произошло. Обозначается Р(В|А).
В коробке содержится 3 белых и 3 желтых таблетки. Из коробки дважды вынимают наугад по одной таблетке, не возвращая их в коробку. Найти вероятность появления белых таблеток при втором испытании (событие В), если при первом испытании была извлечена желтая таблетка (событие А).
Решение: После первого испытания в коробке осталось 5 таблеток, из них 3 белых. Искомое условие вероятности: Р(В/А) = 
В коробке находится 8 красных и 6 белых таблеток. Из коробки последовательно без возвращения извлекают 3 таблетки. Найти вероятность того, что все 3 таблетки белые.
Обозначим; А1 – первая таблетка белая, А2 – вторая таблетка белая, А3 – третья таблетка белая.
Р(A1A2A3)=P(A1)P(A2/A1) 
P(A1)= 



P(A) = P(A1A2A3)= 
Произведение двух событий – это событие, состоящее в совместном появлении этих событий А и В.
Событие В называются независимым от события А, если появление события А не изменяет вероятности появления события В.
Вероятность появления нескольких независимых событий равна произведению вероятностей этих событий:
Р(А 

Для зависимых событий:
Р(АВ)=Р(А) 
Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло.
Вероятность того, что у взрослого пациента все зубы сохранились равна 0,67. Какова вероятность того, что у двух не имеющих отношения друг к другу больных, ожидающих приема в кабинете стоматолога, есть все зубы?
Решение: Р(А 


В терапевтическом отделении больницы 70 % пациентов — женщины, а 21 % — курящие мужчины. Наугад выбирают пациента. Он оказывается мужчиной. Какова вероятность, что он курит?
Решение: Пусть М означает, что пациент — мужчина, а К — что пациент курит. Тогда в силу условия задачи Р(М) = 0,3, а Р(МК) = 0,21. Поэтому условная вероятность
Р(ММ) = Р(М) 

Р(ДД) = 0,485 
Р(МД) = 0,515 
Решение: Вероятность иметь дизиготных близнецов равна:
P(A)= 
1–P(B)= 
Вероятность того, что студент в летнюю сессию сдаст первый экзамен, равна 0,9; второй – 0,9; третий – 0,8. Найти вероятность того, что студентом будут сданы: 1) только второй экзамен; 2) все три экзамена.
Решение: l) P(B) = P( 







2) Р(A1A2A3)=P(A1) 



В группе обследуемых 1000 человек. Из них 600 курящих и 400 некурящих. Среди курящих 240 человек имеют те или иные заболевания легких. Среди некурящих легочных больных 120 человек. Являются ли курение и заболевание легких независимыми событиями?
Решение. Пусть событие А – обследуемый курит, событие В – обследуемый страдает заболеванием легких.
Тогда согласно условию задачи
Так как 0,36 ≠ 0,4, события А и В зависимы.
Вероятность выживания одного организма в течение 20 минут Р = 0,7. В пробирке с благоприятными для существования этих организмов условиями находятся только что родившиеся 2 организма. Какова вероятность того, что через 20 минут они будут живы?
Решение. Пусть событие А — первый организм жив через 20 мин, событие В — второй организм жив через 20 мин. Будем считать, что между организмами нет внутривидовой конкуренции, т. е. события А и В независимы. Событие, что оба организма живы, есть событие АВ. Получаем:
Решение: Вероятность того, что в мишень попадет первый стрелок и не попадет второй, равна:
P(A1 


Вероятность того, что попадет второй стрелок в мишень и не попадет первый, равна:
P( 


Вероятность того, что в мишень попадет только один стрелок, равна сумме этих вероятностей:
P(A1 

Сколько должна планировать пара иметь детей, чтобы вероятность хотя бы одного мальчика была выше 90% (вероятность рождения мальчика и девочки 0,5).
Решение: Пусть вероятность того, что все девочки:
Вероятность того, что не все девочки:
P(хотя бы один мальчик) = 
Варианты заданий
№ 12.1. В одном аквариуме находятся: 3 белые, 3 красные и 3 голубые рыбки. Трех случайно выбранных рыбок переносят в другой аквариум. Какова вероятность того, что все 3 рыбки белые?
№ 12.2. Студент изучает биологию, химию и физику. Он оценивает, что вероятность получить «пятерку» по этим предметам равна соответственно: Р(Б) = 


№ 12.4. На лекции по биофизике во втором семестре присутствуют 124 студента. Из них на экзамене по высшей математике в зимнюю сессию получили оценку «отлично» 19 человек, «хорошо» – 50 человек, «удовлетворительно» – 24 и не сдали экзамен 31 человек. Какова вероятность того, что вызванные наугад один за другим два студента из числа присутствующих на лекции не имеют задолженности по высшей математике?
№ 12.5. Студент пришел на зачет, зная из 30 вопросов только 24. Какова вероятность сдать зачет, если после отказа отвечать на вопрос преподаватель задает еще один вопрос?
№ 12.6. Вероятность того, что в течение одного рабочего дня возникнет неполадка в определенном медицинском приборе равна 0,05. Какова вероятность того, что не произойдет ни одной неполадки за 3 рабочих дня?
№ 12.8. В коробке содержится 3 белых и 3 желтых таблетки. Из коробки дважды вынимают наудачу по одной таблетке, не возвращая в коробку. Найти вероятность появления белой таблетки при втором испытании (событие В), если при первом испытании была извлечена желтая таблетка (событие A).
№ 12.9. В коробке содержится 8 красных и 6 белых таблеток. Из коробки последовательно без возвращения извлекаются 3 таблетки. Найти вероятность того, что все таблетки белые.
№ 12.12. Отдел технического контроля проверяет медицинское изделие на стандартность. Вероятность того, что изделие стандартно, равна 0,9. Найти вероятность того, что из двух проверенных изделий только одно стандартное.
№ 12.13. Какова вероятность того, что у девочки, о которой известно, что она растет в семье, где четыре ребенка, есть старший брат?
№ 12.14. а) Сколько должна планировать супружеская пара иметь детей, чтобы вероятность хотя бы одного мальчика была выше 90%?
б) Сколько должна планировать супружеская пара иметь детей, чтобы вероятность хотя бы одного мальчика и одной девочки была выше 70%?
№ 12.15. а) Найдите вероятность того, что в семье из шестерых детей три мальчика и три девочки.
б) Найдите вероятность того, что в семье из шестерых детей все дети одного и того же пола.
№ 12.16. Представим, что в одной семье есть восемь детей — четыре мальчика и четыре девочки. Какова вероятность того, что старший ребенок – мальчик? Какова вероятность того, что все четыре мальчика старше четырех девочек?
№ 12.17. У пары три ребенка. Определим события А (первый ребенок – девочка), В (второй ребенок – мальчик), С (третий ребенок – мальчик), D (первые два ребенка – мальчики) и Е (хотя бы один ребенок –мальчик).
а) Вычислите вероятности этих пяти событий.
б) Являются ли независимыми А и D; А и Е; В и E?
в) Являются ли независимыми события В, С и E?
№ 12.18. Некоторая вакцина эффективна на 75% в формировании иммунитета. Вакцинировалось два человека. Пусть А и В — события, состоящие в том, что соответственно первый и второй человек приобретает иммунитет. Являются ли независимыми А и В; А и 



№ 12.19. Три врача независимо друг от друга осмотрели одного и того же больного. Вероятность того, что 1-ый врач допустит ошибку при установлении диагноза, равна 0,01. Для 2-го и 3-го – 0,015 0,02 соответственно. Найти вероятность того, что хотя бы один из врачей допустит ошибку в диагнозе.
№ 12.20. Три крысы обучаются выполнению трех различных заданий (по одной крысе на каждое задание). Вероятности того, что крысы выполняют свои задания за 1 мин, составляют соответственно 2/3, 1/2 и 1/3. Какова вероятность того, что все три крысы выполнят свои задания за 1 мин? Что выполнят только две? Что выполнят хотя бы две?
№ 12.21. В одном городе вероятность грозы в любой данный день в течение августа составляет 0,25, а вероятность града — 0,1. Вероятность града во время грозы равна 0,3.
а) Являются ли независимыми события «град» и «гроза»?
б) Какова вероятность града в такой день, когда нет грозы?
№ 12.22. На трех фермах A, В и С произошла вспышка заболевания ящуром. Доля зараженного скота составляют соответственно 1/6, 1/4 и 1/3. Из каждой фермы случайным образом выбирают по одной корове.
а) Какова вероятность того, что заболевание имеется только у одной коровы?
б) Если заражена только одна корова, то какова вероятность, что эта корова выбрана из фермы A?
№ 12.23. Медицинский прибор проходит 3 стадии обработки. Вероятность получения брака на первой стадии равна 0,02; на второй – 0,03; на третьей – 0,02. Найдите вероятность получения прибора без брака после 3 стадий, предполагая, что получения брака на отдельных стадиях являются независимыми событиями.
№ 12.24. Студент успел подготовить к экзаменам 20 вопросов из 25. Какова вероятность того, что из 3 наудачу выбранных вопросов студент знает не менее 2?
№ 12.25. Студент разыскивает нужную ему формулу в трех справочниках. Вероятность того, что формула содержится в первом, втором и третьем справочниках, равна соответственно 0,6, 0,7 и 0,8. Найти вероятность того, что эта формула содержится не менее чем в двух справочниках.









