В треугольнике abc провели биссектрису be оказалось что bc ce ab
В треугольнике ABC провели биссектрису BE
В треугольнике ABC провели биссектрису BE и прямая m (серединный перпендикуляр) не проходит через вершину С. Оказалось, что BE = EC, а прямая m пересекает сторону BC. Докажите, что угол C меньше 36 градусов.
допустим что угол С = 36
ВЕС равнобедренный и тогдда угол ЕВС 36 тогда угол АВС 72 тогда угол ВАС 72 треугольник АВС равнобедренный тк два угла равны
ВЕ это биссектрисса в равнобедренном АВС значит она и медиана АЕ = ЕС но также ВЕ = ЕС по условию значит АЕ=ВЕ=ЕС значит АВС прямоугольный по признаку прямоугольного треугольника
значит угол В 90 градусов и угол С равен 45 но такого быть не может тк мы его взяли 36 противоречие
Задайте свой вопрос по математике
профессионалам
Другие вопросы на эту тему:
ABCD — выпуклый четырёхугольник
ABCD — выпуклый четырёхугольник, где AB = 7, BC = 4, AD = DC,
угол ABD = угол DBC. Точка E на отрезке AB такова, что угол DEB = 90 градусов. Найдите
длину отрезка AE.
Математика
График функции f(x)=1/12х²+ах +b пересекает ось Ох в точках А и С, а ось Оу — в точке В, как изображено на рисунке. Оказалось, что для точки Т с координатами (3; 3) выполнено условие ТА=ТВ=TC. Найдите b.
Внутри треугольника
Задача по геометрии
Несколько задач по геометрии
Несколько задач по геометрии.
1.Периметр прямоугольного треугольника равен 132, а сумма квадратов сторон раына 6050. Найти стороны.
2.Найти биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18.
3.Перпендикуляр к боковой стороне АВ трапеции АВСD, проходящей через её середину К, пересекает сторону СD в точке L.Известно, что площадь четырехугольника АКLD в 5 раз больше площади четырехугольника BKLC, СL=3, DL=15, KC=4. Найти длину отрезка KD.
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
Мари Умняшка
В треугольнике ABC провели биссектрису BL. Оказалось, что AB•BC=AL•AC. Докажите, что треугольник ABL – равнобедренный.
Лучший ответ:
Васян Коваль
Биссектриса треугольника Определение 4. Любая из трех биссектрис внутренних углов треугольника называется биссектрисой треугольника.
Под биссектрисой угла треугольника также понимают отрезок между его вершиной и точкой пересечения биссектрисы с противолежащей стороной треугольника.
Теорема 8. Три биссектрисы треугольника пересекаются в одной точке.
биссектрисы Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК1 и ВК2. Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе угла А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе угла В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК3, то есть в точке Р пересекаются все три биссектрисы.
Свойства биссектрис внутреннего и внешнего углов треугольника
Теорема 9. Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
к теоремам 9 и 10 Доказательство. Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке М продолжением стороны АВ. Так как ВК – биссектриса угла АВС, то ∠АВК=∠КВС. Далее, ∠АВК=∠ВМС, как соответственные углы при параллельных прямых, и ∠КВС=∠ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ВСМ=∠ВМС, и поэтому треугольник ВМС – равнобедренный, откуда ВС=ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК: КС=АВ: ВМ=АВ: ВС, что и требовалось доказать.
Теорема 10 Биссектриса внешнего угла В треугольника АВС обладает аналогичным свойством: отрезки AL и CL от вершины А и С до точки L пересечения биссектрисы с продолжением стороны АС пропорциональны сторонам треугольника: AL:CL=AB:BC.
Это свойство доказывается так же, как и предыдущее: на рисунке проведена вспомогательная прямая СМ, параллельная биссектрисе BL. Углы ВМС и ВСМ равны, а значит, и стороны ВМ и ВС треугольника ВМС равны. Из чего приходим к выводу AL:CL=AB:BC.
формула биссектрисы 2
Теорема d5. (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и углом A, равным 2? и биссектрисой l, имеет место равенство:
l = ( 2ab / (a b) ) · cos?.
Помогите решить задачу по геометрии!!
Биссектриса треугольника Определение 4. Любая из трех биссектрис внутренних углов треугольника называется биссектрисой треугольника.
Под биссектрисой угла треугольника также понимают отрезок между его вершиной и точкой пересечения биссектрисы с противолежащей стороной треугольника.
Теорема 8. Три биссектрисы треугольника пересекаются в одной точке.
биссектрисы Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК1 и ВК2. Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе угла А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе угла В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК3, то есть в точке Р пересекаются все три биссектрисы.
Свойства биссектрис внутреннего и внешнего углов треугольника
Теорема 9. Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
к теоремам 9 и 10 Доказательство. Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке М продолжением стороны АВ. Так как ВК – биссектриса угла АВС, то ∠АВК=∠КВС. Далее, ∠АВК=∠ВМС, как соответственные углы при параллельных прямых, и ∠КВС=∠ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ВСМ=∠ВМС, и поэтому треугольник ВМС – равнобедренный, откуда ВС=ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК: КС=АВ: ВМ=АВ: ВС, что и требовалось доказать.
Теорема 10 Биссектриса внешнего угла В треугольника АВС обладает аналогичным свойством: отрезки AL и CL от вершины А и С до точки L пересечения биссектрисы с продолжением стороны АС пропорциональны сторонам треугольника: AL:CL=AB:BC.
Это свойство доказывается так же, как и предыдущее: на рисунке проведена вспомогательная прямая СМ, параллельная биссектрисе BL. Углы ВМС и ВСМ равны, а значит, и стороны ВМ и ВС треугольника ВМС равны. Из чего приходим к выводу AL:CL=AB:BC.
формула биссектрисы 2
Теорема d5. (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и углом A, равным 2? и биссектрисой l, имеет место равенство:
l = ( 2ab / (a+b) ) · cos?.
В треугольнике abc провели биссектрису be оказалось что bc ce ab
В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.
а) докажите, что биссектриса угла С делит отрезок МN пополам
б) пусть Р — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.
а) Обозначим K точку пересечения отрезков AM и BN. Треугольник ABN равнобедренный, так как в нем AK является биссектрисой и высотой. Следовательно, AK является и медианой, то есть K — середина BN. Получаем, что AN = AB = 6, откуда NC = AC − AN = 3.
Рассмотрим треугольник ABC, биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам: BM : MC = AB : AC, учитывая, что длина BC равна 5, получаем: BM = 2; MC = 3.
В треугольнике MNC стороны NC и MC равны, следовательно, треугольник MNC — равнобедренный, с основанием MN. Значит, биссектриса угла C также является медианой и высотой. Таким образом, получаем, что биссектриса угла С делит отрезок MN пополам.
б) Рассмотрим треугольник PMN: отрезок PO перпендикулярен прямой MN и делит её пополам, следовательно, треугольник PMN — равнобедренный с основанием MN. Значит, PM = PN и отношение AP : PN = AP : PM.
В треугольнике AMC отрезок CP — биссектриса, поэтому AP : PM = AC : MC = 3 : 1.
Приведем другое решение.
а) Обозначим за K точку пересечения отрезков AM и BN. Треугольник ABN равнобедренный, так как в нем AK является биссектрисой и высотой. Следовательно, AK является и медианой, то есть K — середина BN. Получаем, что AN = AB = 6, откуда NC = AC − AN = 3.
Далее, в видим, что KM является высотой и медианой, откуда следует, что треугольник BMN равнобедренный. Обозначим BM = MN = x, тогда MC = BC − BM = 5 − x.
Из по теореме косинусов получаем:
Из треугольника по теореме косинусов:
откуда:
Таким образом, получили, что MN = 2, MC = 3 — значит, треугольник MCN равнобедренный, откуда следует, что биссектриса CO является и высотой, и медианой. Значит, точка O — середина стороны MN. Что и требовалось доказать.
б) Опустим вспомогательный перпендикуляр из точки P на сторону AN (пересечение в точке H). Отрезок PH является радиусом вписанной окружности, так как P — точка пересечения биссектрис (а значит — центр вписанной окружности). Найдем радиус из формулы где S — площадь треугольника ABC, p — полупериметр треугольника, равный
Найдем площадь по формуле Герона:
Тогда
Из треугольника ABC вновь по теореме косинусов найдем косинус угла A (обозначим его за ):
Так как то
откуда
Тогда из получаем:
Найдем, что HN = AN − AH = 1, тогда из по теореме Пифагора:
Окончательно получаем, что
Дублирует задание 505501.


