В треугольнике ABC проведены BK — медиана, BE — биссектриса, AD — высота. Известно, что прямые BK и BE делят отрезок AD на три равные части.
а) Докажите, что треугольник ABC — тупоугольный.
б) Найти длину стороны AC, если AB = 4.
а) Пусть треугольник ABC не является тупоугольным. Тогда его высота AD лежит внутри треугольника или совпадает с его стороной. Тогда BD ⩽ AB. Пусть прямая BE пересекает AD в точке F, прямая BK пересекает AD в точке G. По свойству биссектрисы Тогда Применим к треугольнику ACD и секущей BG теорему Менелая: откуда что невозможно. Получаем противоречие, значит, треугольник ABC тупоугольный.
б) По свойству биссектрисы откуда BD = 2, поэтому угол ABC = 60°. Применим к треугольнику ACD и секущей BG теорему Менелая:
Осталось применить для треугольника ABC теорему косинусов:
∠ACH = ∠ABC, как углы с взаимно перпендикулярными сторонами.
Медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы.
Углы при основании равнобедренного треугольника равны.
Поэтому ∠MBC = ∠MCB, откуда ∠ACH = ∠MCB (т.к. ∠ACH = ∠MBC).
∠ACK = ∠BCK, как углы при биссектрисе;
Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.
Тогда справедливо равенство ;
Пусть CM = 5x, тогда CH = 3x;
Тогда по теореме Пифагора получим:
∠CHA = 90°; AH = 2; CH = 6;
По теореме Пифагора найдём AC:
AC² = CH²+AH² = 6²+2² = 36+4 = 2²·10;
∠ACB = 90°; AC = 10√2; AB = 20;
По теореме Пифагора надём BC:
BC² = AB²-AC² = 20²-40 = 400-40 = 6²·10;
∠CHK = 90°; CH = 6; HK = 3;
По теореме Пифагора найдём CK:
CK² = CH²+HK² = 6²+3² = 36+9 = 3²·5;
ответ: AB = 20; BC = 6√10; AC = 2√10; CK = 3√5.
Задание 4 Высота, поведённая в равнобедренном треугольнике является его биссектрисой и медианой. Углы при основании равны, и они будут (180-80):2 = 50 градусов И биссектриса делит угол при вершине пополам: 80:2=40 градусов (я не совсем поняла, какой именно угол найти, поэтому написала 2варианта)
Задание 5 Биссектриса делит угол пополам, и если угол ЕАС = 12, то и угол ВАЕ тоже равен 12
Задание 6 Из неравенства треугольников (каждая сторона меньше суммы двух других): АВ Удалить ответ +1 балл
В остроугольном треугольнике ABC проведены высоты AP и CQ.
а) Докажите, что угол PAC равен углу PQC.
б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что PQ = 8 и ∠ABC = 60°.
а) Углы APC и AQC — прямые, значит, точки A, Q, P и C лежат на одной окружности с диаметром AC, и, следовательно, равны и вписанные углы PAC и PQC этой окружности, опирающиеся на дугу PC, что и требовалось доказать.
б) Прямоугольные треугольники ABP и CBQ имеют общий угол ABC, следовательно, они подобны, откуда или но тогда и треугольники BAC и BPQ также подобны, причем коэффициент подобия равен откуда Тогда радиус R окружности, описанной около треугольника ABC равен
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
В задании № 15 базового уровня ЕГЭ по математике нас ждет решение задач по планиметрии. Задачи в этом разделе не сложные, достаточно знать определения основных понятий и базовые формулы, после чего задача сводится к элементарным вычислениям.
Разбор типовых вариантов заданий №15 ЕГЭ по математике базового уровня
Вариант 15МБ1
В треугольнике ABC угол ACB равен 90°, cos A = 0,8, AC = 4. Отрезок CH – высота треугольника ABC(смотрите рисунок). Найдите длину отрезка AH.
Алгоритм выполнения:
Решение:
Вспомним определение косинуса угла.
Косинус – это тригонометрическая функция, которая в прямоугольном треугольнике обозначает отношение катета, прилежащего к острому углу, к гипотенузе.
Запишем выражение для нахождения косинуса угла. Для этого рассмотрим треугольник ACH.
Гипотенуза – это сторона прямоугольного треугольника, лежащая против угла 90°. В данном случае против угла H лежит сторона AC, то есть AC – гипотенуза.
Прилежащий к углу А катет – АН.
Получим cos A = АН/АС.
Выразим неизвестную величину.
АН = АС · cos A = 4 · 0,8 = 3,2
Вариант 15МБ2
Найдите вписанный угол, опирающийся на дугу, длина которой равна 5/18 длины окружности. Ответ дайте в градусах.
Алгоритм выполнения:
Решение:
Вспомним соотношение величины вписанного угла и градусной меры угла, на который он опирается.
Величина вписанного угла равна половине градусной меры дуги, на которую он опирается.
Вычислим градусную меру угла, на который опирается дуга.
Весь круг составляет 360°, а 5/18 от его длины это
Вычислим вписанный угол.
Так как вписанный угол равен половине градусной меры дуги, на которую он опирается, вписанный угол равен
Вариант 15МБ3
Найдите вписанный угол, опирающийся на дугу, длина которой равна 11/36 длины окружности. Ответ дайте в градусах.
Алгоритм выполнения:
Решение:
Вспомним соотношение величины вписанного угла и градусной меры угла, на который он опирается.
Величина вписанного угла равна половине градусной меры дуги, на которую он опирается.
Вычислим градусную меру угла, на который опирается дуга.
Весь круг составляет 360°, а 11/36 от его длины это
Вычислим вписанный угол.
Так как вписанный угол равен половине градусной меры дуги, на которую он опирается, вписанный угол равен
Вариант 15МБ4
В треугольнике АВС известно, что АВ=ВС=15, АС=24. Найдите длину медианы ВМ.
Алгоритм выполнения
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Решение:
Если АВ=ВС, то ∆АВС – равнобедренный.
.
Вариант 15МБ5
На стороне ВС прямоугольника АВСD, у которого АВ=12 и АD=17, отмечена точка Е так, что треугольник АВЕ равнобедренный. Найдите ЕD.
Алгоритм выполнения
Решение:
Т.к. по условию ∆АВЕ равнобедренный, то ВЕ=АВ=12.
Т.к. АВСD прямоугольник, то ВС=АD=17, СD=АВ=12.
Вариант 15МБ6
Алгоритм выполнения
Решение:
Вариант 15МБ7
В равнобедренном треугольнике АВС боковая сторона АВ=25, sin A=3/5. Найдите площадь треугольника АВС.
Алгоритм выполнения
Решение
В ∆ADB угол А является противолежащим к BD. Поэтому sin A=BD/AB → BD = AB · sin A = 25 · 3 / 5 = 15.
Из ∆ADB по т.Пифагора имеем: AB 2 =AD 2 +BD 2 →
Т.к. ∆АВС равнобедренный, то высота BD, проведенная к основанию, является и медианой. Поэтому АС=2АD=2·20=40.
Вариант 15МБ8
В равнобедренном треугольнике АВС медиана ВМ, проведенная к основанию, равна 12, а tg А=12/5. Найдите длину боковой стороны треугольника АВС.
Алгоритм выполнения
Решение:
Т.к. ∆АВС равнобедренный, то медиана ВМ, проведенная к основанию, является и высотой. Тогда ∆АВМ прямоугольный.
Из ∆АВМ по теореме Пифагора АВ 2 =АМ 2 +ВМ 2 →
Вариант 15МБ9
Алгоритм выполнения
Решение:
По условию угол АВМ равен половине угла В. Значит, угол АВМ составляет
Т.к. ВМ – медиана, опущенная на основание равнобедренного ∆АВС, то ВМ является и высотой. Поэтому ∆АМВ прямоугольный с прямым углом АМВ.
В прямоугольного ∆АМВ:
Вариант 15МБ10
В равнобедренном треугольнике АВС медиана ВК=10, боковая сторона ВС=26. Найдите длину отрезка МN, если известно, что он соединяет середины боковых сторон.
Алгоритм выполнения
Решение:
Поскольку ВК медиана, то АС=2АК=2·24=48.
Линия, соединяющая в треугольники середины двух сторон, называется средней линией. Ее величина составляет половину третьей стороны (которой она параллельна).
Вариант 15МБ11
В треугольнике АВС высота АС=56, ВМ – медиана, ВН – высота, ВС=ВМ. Найдите длину отрезка АН.
Алгоритм выполнения
Решение:
Рассмотрим ∆АВС. Т.к. ВМ медиана, то АМ=МС=АС/2=56/2=28.
По условию ВС=ВМ, поэтому ∆МВС равнобедренный с основанием МС и равными боковыми сторонами ВМ и ВС. Тогда высота, проведенная к основанию, является еще и медианой. Отсюда следует, что МН=НС=МС/2=28/2=14.
Вариант 15МБ12
Найдите площадь прямоугольного треугольника, если его гипотенуза равна √17, а один из катетов равен 1.
Алгоритм выполнения
Решение:
Обозначим 1-й (известный) катет через а, 2-й – через b, гипотенузу – через с.
Т.к. треугольник прямоугольный, то его площадь можно найти по ф-ле: S=a·b/2. Тогда: S=1·4/2=2.
Вариант 15МБ13
В равнобедренном треугольнике АВС основание АС равно 32, площадь треугольника равна 192. Найдите длину боковой стороны АВ.
Алгоритм выполнения
Решение:
Площадь треугольника определяется по ф-ле: S=ah/2, где а=АС=32. Отсюда находим высоту ВК: BK=h=2S/a → ВК=2·192/32=12.
Т.к. ∆АВС равнобедренный, то высота, опущенная в нем на основание, является и медианой. Тогда АК=АС/2=32/2=16.
В остроугольном треугольнике KMN проведены высоты KB и NA.
а) Докажите, что угол ABK равен углу ANK.
б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и ∠KMN = 45°.
а) Углы NAK и NBK, опирающиеся на отрезок KN, равны, значит, точки A, B, N и K лежат на одной окружности, а, следовательно, равны и вписанные углы ABK и ANK этой окружности, опирающиеся на дугу AK, что и требовалось доказать.
б) Прямоугольные треугольники KMB и NMA имеют общий угол KMN, следовательно, они подобны, откуда или но тогда и треугольники KMN и BMA также подобны, причем коэффициент подобия равен откуда
Тогда радиус R окружности, описанной около треугольника ABM равен
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,