Благодаря чему мы видим предметы физика оптика

Как мы видим?

Благодаря чему мы видим предметы физика оптика

Еще со школы мы все хорошо знаем: человек видит благодаря тому, что у него в глазу имеется сетчатка, состоящая из светочувствительных клеток — колбочек и палочек. Меняющий свою форму хрусталик проецирует отражаемый окружающими предметами свет на сетчатку и создает на ней изображение этих предметов. Весьма похоже на цифровой фотоаппарат с трансфокатором и светочувствительной полупроводниковой матрицей вместо сетчатки. Палочки и колбочки преобразуют свет в электрические сигналы, которые и передаются в мозг, запуская сложнейший процесс видения. Для этого мозг использует не только информацию, поступающую к нему в данный момент, но и накопленный ранее опыт. Собственно, то, что мы видим, — это основанная на предыдущем опыте интерпретация поступающих сигналов. В частности, этот опыт используется для управления движением глаз при рассматривании.

Известно, например, что лягушка видит только движущиеся объекты. Почему же человек умеет видеть неподвижные предметы? Оказывается, что и он через 1–2 секунды перестает воспринимать неподвижные изображения, если освещенность каждой из колбочек и палочек не меняется. Однако в нормальных условиях глаз человека постоянно совершает скачкообразные микроскопические движения, и информация о наблюдаемом объекте все время возобновляется, благодаря этому он остается видимым.

При рассматривании изображения глаз также совершает постоянные движения, сосредоточивая внимание и многократно возвращаясь к наиболее важным и информативным деталям, которые формируют запоминающийся образ объекта. Например, если речь идет о лице, то щеки разглядываются редко, а вот глаза, нос, губы — чаще. Вероятно, поэтому нам удается рассматривать абстрактные картины Пикассо, выполненные в технике кубизма. На них могут быть изображены одновременно такие важные фрагменты, которые не видны все сразу при рассматривании прототипа.

Благодаря чему мы видим предметы физика оптика

Удивительно и то, что человекможет рассматривать движущиеся объекты. Во-первых, ему удается следить за ними взглядом (опять-таки благодаря движению глаз, но не скачкообразному, а плавному). Во-вторых, мозг умеет сливать набор дискретных кадров, получаемых на сетчатке вследствие скачкообразных микродвижений, в плавную непрерывную картину. Получается, что, рассматривая движущиеся объекты, мы все время смотрим кино. Справедливо и обратное: если мы будем рассматривать ряд статических кадров, фиксирующих последовательные положения наблюдаемого объекта, то при достаточно высокой частоте смены кадров увидим непрерывное движение. Именно так и устроен кинематограф.

Конечно, это далеко не все даже из открытых секретов видения. Свойства глаза человека и особенности его психики обязательно учитываются при проектировании современных видеосистем — камер, телевизоров и компьютерных дисплеев. Как мы видим, они становятся все лучше и лучше.

Источник

Мой конспект — конспекты, шпаргалки, лекции

Наши партнеры

Почему мы видим предметы

Большинство окружающих предметов мы видим благодаря тому, что они отражают свет, падающий на них. Отражают свет различные предметы равно — именно это и придает разнообразия окружающему миру.

Предметы, отражающие почти весь свет, падающий на них, кажутся нам обычно белыми (но далеко не всегда: например, зеркала, хорошо отражают свет, белыми не выглядят!). Однако даже ослепительно белый снег отражает не все 100, а только 80-85 процентов света, падающего на него.

Предметы же, которые поглощают почти весь свет, падающий на них, кажутся нам черными. Но даже черное сукно все же отражает несколько процентов света. И расчеты показывают, что благодаря этому черное сукно в ясный солнечный день отражает примерно в десять тысяч раз больше света, чем белый снег в лунную ночь! Почему же тогда сукно кажется нам черным даже в солнечный день, а снег — белым даже в лунную ночь? Дело в том, что все познается в сравнении: и сукно, и снег мы сравниваем с другими предметами, освещенными так же.

Предмет, отражает всего 10 % света, кажется нам конечно темно — серым: таким, например, является кружок, изображенный на рис. 17.1. Однако, несмотря на полнолуние (рис. 17.2), мало кто назовет его темно — серым, хотя измерения показывают, что он отражает тоже 10 % солнечного света, падающего на него. Дело в том, что кружок мы видим на белом фоне, а Луна — на фоне темного ночного неба.

Вид полной Луны мало кого оставляет равнодушным, поэтому представьте себе, какое величественное зрелище представляет собой Земля, если наблюдать ее с Луны (рис. 17.3)! Для наблюдателя, находящегося на Луне, Земля «светит» 45 месяцев для земного наблюдателя!

Похожие материалы:

Вы устали искать подходящие конспекты, лекции и семинары? Тогда Вы попали на самый полезный сайт в этой отрасли! У нас собраны лучшие методические учебные материалы по всем направлениям обучения: география, биология, физика, химия, история, философия, психология, экономика, политология и др. Желаем Вам самых высоких оценок иуспешного сдания зачетов и экзаменов. Успехов!

Источник

Зрение как оно есть

Рассказываем, как мозг помогает нам видеть окружающий мир

В самом простом смысле зрение — это в первую очередь два глаза, которые получают и обрабатывают информацию об окружающем нас мире. На самом деле человеческое зрение, разумеется, устроено гораздо сложнее, и информация от органов чувств (то есть глаз) проходит несколько этапов обработки: как самим глазом, так и далее — мозгом. Вместе с офтальмологической клиникой 3Z рассказываем, как зрительная система человека формирует изображение действительности, и объясняем, почему мы не видим мир перевернутым, маленьким, трясущимся и разделенным на две части.

Из школьного курса физики вы можете помнить про линзы — приборы из прозрачного материала с преломляющей поверхностью, способные, в зависимости от своей формы, собирать или рассеивать попадающий на них свет. Именно линзам мы обязаны тому, что в мире существуют фотоаппараты, видеокамеры, телескопы, бинокли и, конечно, контактные линзы и очки, которые носят люди. Человеческий глаз — это точно такая же линза, а точнее — сложная оптическая система, состоящая из нескольких биологических линз.

Благодаря чему мы видим предметы физика оптика

Проекция объекта через двояковыпуклую линзу

Первая из них — роговица, внешняя оболочка глаза, наиболее выпуклая его часть. Роговица — это вогнуто-выпуклая линза, которая принимает лучи, исходящие из каждой точки предмета, и передает их дальше через переднюю камеру, заполненную влагой, и зрачок к хрусталику. Хрусталик, в свою очередь, представляет собой двояковыпуклую линзу, по форме напоминающую миндаль или сплющенную сферу.

Двояковыпуклая линза — собирающая: лучи, проходящие через ее поверхность, собираются за ней в одну точку, после чего формируется копия наблюдаемого предмета. Интересный момент состоит в том, что изображение объекта, сформированное на заднем фокусе такой линзы, — действительное (то есть соответствует тому самому наблюдаемому предмету), перевернутое и уменьшенное. Изображение, которое формируется за хрусталиком, поэтому, точно такое же.

То, что изображение уменьшенное, позволяет глазу видеть объекты, по величине в несколько десятков, сотен и тысяч раз превосходящие его по размеру. Другими словами, хрусталик компактно складывает изображение и в таком же виде отдает его сетчатке, выстилающей бо́льшую часть внутренней поверхности глаза — места заднего фокуса хрусталика. Вместе роговица и хрусталик, таким образом, — это компонент зрительной системы, который собирает рассеянные лучи, исходящие от объекта, в одну точку и формирует их проекцию на сетчатке. Строго говоря, никакой «картинки» на сетчатке на самом деле нет: это всего лишь следы фотонов, которые затем преобразуются рецепторами и нейронами сетчатки в электрический сигнал.

Благодаря чему мы видим предметы физика оптика

Внутреннее строение глаза

Этот электрический сигнал затем проходит в головной мозг, где обрабатывается отделами зрительной коры. Все вместе эти отделы отвечают за то, чтобы преобразовать сигналы о расположении фотонов — единственную информацию, которую получает сам глаз — в имеющие смысл образы. При этом мозг — система взаимосвязанная, и за то, как мы воспринимаем то, что происходит в действительности, отвечают не только наши глаза и зрительная система, но и другие органы чувств, способные получать информацию. Мы не видим мир перевернутым благодаря тому, что у нашего вестибулярного аппарата есть информация о том, что мы стоим ровно, двумя ногами на земле, и дерево, растущее из земли, соответственно, перевернутым быть не должно.

Подтверждение этому — эксперимент, который поставил на самом себе американский психолог Джордж Стрэттон (George Stratton) в 1896 году: ученый изобрел специальное устройство — инвертоскоп, чьи линзы также могут переворачивать изображение, на которое смотрит тот, кто их носит. В своем устройстве Стрэттон проходил неделю и при этом не сошел с ума от необходимости передвигаться в перевернутом пространстве. Его зрительная система быстро адаптировалась под измененные обстоятельства, и уже через пару дней ученый видел мир таким, каким привык видеть его с детства.

Другими словами, в мозге нет специального отдела, который переворачивает изображение, поступившее на сетчатку: за это отвечает вся зрительная система головного мозга, которая, с учетом информации от других органов чувств, позволяет нам точно определить ориентацию объектов в пространстве.

Что касается самой сетчатки, то для того, чтобы понять, как работает зрение, нужно также подробнее рассмотреть ее функционирование и строение. Сетчатка представляет собой тонкую многослойную структуру, в которой находятся нейроны, принимающие и обрабатывающие световые сигналы от оптической системы глаза и отправляющие их друг другу и в мозг для дальнейшей обработки. Всего в сетчатке выделяют три слоя нейронов и еще два слоя синапсов, получающих и передающих сигналы от этих нейронов.

Первые и главные нейроны, участвующие в обработке светового стимула, — это фоторецепторы (светочувствительные сенсорные нейроны). Два основных вида фоторецепторов в сетчатке — это палочки и колбочки, получившие свои название за палочко- и колбочкообразную форму, соответственно. Палочки и колбочки заполнены светочувствительными пигментами — родопсином и йодопсином соответственно. Родопсин в разы чувствительнее к свету, чем йодопсин, но только к свету с одной длиной волны (около 500 нанометров в видимой области) — именно поэтому палочки, содержащие родопсин, отвечают за зрение человека в темноте: они улавливают даже мельчайшие лучи, помогая нам различать очертания предметов, при этом не позволяя точно определить их цвет. А вот за цветовосприятие уже как раз отвечают «дневные» фоторецепторы — колбочки.

Светочувствительный йодопсин, входящий в состав колбочек, бывает трех видов в зависимости от того, к свету с какой длиной волны он чувствителен. В нормальном состоянии колбочки человеческого глаза реагируют на свет с длинной, средней и короткой волной, что примерно соответствует красно-желтому, желто-зеленому и сине-фиолетовому цветам (а если проще — красному, зеленому и синему). Колбочек, которые содержат тот или иной вид йодопсина, в сетчатке разное количество, и их баланс как раз и помогает различать все краски окружающего мира. В случае, когда колбочек с тем или иным видом йодопсина, недостаточно или просто нет, говорят о наличии дальтонизма — особенности зрения, при котором недоступно распознавание всех или некоторых цветов. Вид дальтонизма напрямую зависит от того, какие именно колбочки «не работают», но самым распространенным у человека считается дейтеранопия — при ней отсутствуют колбочки, чей йодопсин чувствителен к свету со средней длиной волны (то есть плохо воспринимают зеленый цвет или не воспринимают его вообще).

Благодаря чему мы видим предметы физика оптика

Красное яблоко при нормальном зрении и яблоко при дейтеранопии

Источник

Предмет и задачи оптики

Вы будете перенаправлены на Автор24

Предмет оптики

Оптика как раздел физики посвящена изучению законов, свойств, и принципов взаимодействия с веществом электромагнитного поля в оптическом диапазоне длин волн (света). Оптику как дисциплину иногда условно делят на геометрическую, физическую и физиологическую оптику.

Еще до установления природы света были известны оптические законы:

Готовые работы на аналогичную тему

Необходимо отметить, что волновые и квантовые свойства имеются у всего спектра электромагнитного излучения, но в зависимости от длины волны один вид свойств превалирует по значимости над другим, соответственно, применяются различные в методы их исследования. В зависимости от длины волны разные группы волн имеют различные виды практического применения. Следовательно, оптику не следует рассматривать как замкнутую дисциплину, которая изучает только оптическую часть спектра, отделяя другие области четкими границами. Результаты и законы, полученные в других областях, иногда оказываются применимы в оптической области спектра и наоборот.

Итак, предмет изучения оптики: свойства оптического излучения, которые проявляются в процессах его генерации, распространения и взаимодействия с веществом.

Практическое значение оптики, ее влияние

Значение оптики для практики и ее влияние на другие области знания весьма существенны. Так, создание телескопа и спектроскопа значительно расширила возможности человека в познании окружающего его мира. Изобретение микроскопа принципиально изменило биологию. Фотография помогает почти всем отраслям науки. Отсутствие очков ухудшило бы качество жизни многих людей.

Явления, которые изучаются физической оптикой, составляют большой перечень. Оптические явления связаны со многими эффектами, исследуемыми в других разделах физики, при этом оптические методы их исследования относят к наиболее тонким и точным. Из-за этого оптика очень долгое время играла ведущую роль во многих фундаментальных физических разработках, была основой для основных физических воззрений. Так, например, теория относительности и квантовая теория зародились и начали свое развитие на почве оптических исследований. Создание лазеров открыло новые возможности не только в оптике, но и многих отраслях науки и техники.

Задачи оптики

Наиболее важными задачами оптики являются:

Перспективными задачам оптики на сегодняшний день являются:

Решение:

Решающее значения для хорошего видения имеет соотношение между потоком фотонов, которые несут информацию о предмете, и потоком тепловых фотонов, которые информации не несут, но создают фоновый шум. Чем больше превышение потока информационных фотонов, тем лучше зрение.

Ответ: Итак, видимый диапазон является наиболее подходящим для зрения, так как на меньшие длины волн днем около поверхности Земли приходится слишком малая доля энергии, тогда как на больших длинах волн возникают шумы, которые мешают зрению.

Задание: Каковы изменения спектра солнечного света при прохождении сквозь атмосферу?

Решение:

Источник

Частная школа. 9 класс

Конспекты, контрольные, тесты

Свет. Источники света

Конспект по физике для 9 класса «Свет. Источники света». Что изучается в разделах геометрическая оптика и волновая оптика. Что такое источники света.

Свет. Источники света.

Почему небо голубое? Что такое радуга и полярное сияние? Почему при ярком свете мы видим окружающие нас предметы многоцветными, а с наступлением сумерек цветность предметов уменьшается? На понимание природы световых явлений у человечества ушло не одно тысячелетие.

ПРИРОДА СВЕТА

Если задуматься над вопросом, каким образом мы получаем информацию об окружающем нас мире, то главную роль здесь играет зрение. Учёные считают, что более 80% информации из окружающего мира мы получаем с помощью глаз. Для того чтобы мы смогли увидеть предмет, наши органы зрения должны преобразовать свет, излучённый или отражённый этим предметом. Поэтому природа световых явлений волновала учёных с глубокой древности.

Современная теория световых явлений сложилась в конце XIX — начале XX вв. благодаря работам Дж. Максвелла и Г. Герца, которые доказали, что свет имеет электромагнитную природу.

Раздел физики, в котором изучают световые явления, называют оптикой (от греч. optike — наука о зрительных восприятиях). Геометрической оптикой называют раздел оптики, в котором изучаются законы распространения света, основываясь на представлении о световых лучах. Волновая оптика — раздел оптики, который описывает распространение света с учётом его волновой природы.

В курсе физики 8 класса уже говорилось о том, что свет является излучением. Следовательно, свет передаёт телам, на которые он попадает, энергию. Говорят, что свет является видимым излучением, или электромагнитными волнами, видимыми человеческим глазом.

Представление о световых лучах возникло ещё в античной науке. Евклид, обобщив достижения своих предшественников, сформулировал законы распространения и отражения света. Бурное развитие геометрической оптики в XVII в. было обусловлено изобретением таких оптических приборов как лупа, телескоп, микроскоп и т. д. Геометрическая оптика является примером теории, позволившей при достаточно небольшом числе фундаментальных понятий и законов получать много практически важных результатов. В теории оптических устройств она сохранила большое значение до настоящего времени.

Представления о волновом характере распространения света восходят к основополагающим работам голландского учёного второй половины XVII в. X. Гюйгенса. Но только благодаря электромагнитной теории света, созданной Максвеллом, удалось в конце XIX в. найти простое объяснение целого ряда явлений, непонятных до тех пор.

ИСТОЧНИКИ СВЕТА

Тела, от которых исходит свет, называются источниками света. По происхождению источники света можно разделить на искусственные, т. е. созданные человеком, и естественные, т. е. созданные природой. Естественными источниками света являются Солнце, звёзды, молнии, полярные сияния, светящиеся насекомые и др. Искусственные источники света в зависимости от того, какой процесс лежит в основе получения излучения, делят на тепловые и люминесцирующие (от лат. lumen — свет). В тепловых источниках свет возникает в результате нагревания тел до высокой температуры, а в люминесцирующих — в результате превращения тех или иных видов энергии в видимое излучение независимо от теплового состояния излучающего тела. Примерами тепловых источников света являются пламя свечи, лампочка накаливания и т. д. Примерами люминесцирующих источников света, часто называемых холодным светом, являются лампы дневного света, экран телевизора и т. д.

Первые искусственные источники света (костёр, лучина, факел) появились в глубокой древности. Вплоть до конца XIX в. применялись в основном тепловые источники света, основанные на сжигании горючих веществ (свечи, масляные и керосиновые лампы и т. п.). Только в конце XIX в. появились первые электрические источники света, которые можно было использовать на практике. В их создание большой вклад внесли русские учёные П. Н. Яблочков, В. Н.Чиколев, А. Н. Лодыгин и др. С начала XX в. электрическая лампа накаливания благодаря удобству в эксплуатации начинает быстро и повсеместно вытеснять остальные источники света.

Природные явления люминесценции — северное сияние, свечение некоторых насекомых, минералов, гниющего дерева — были известны с очень давних времён, однако изучать люминесценцию стали с конца XIX в. Первые образцы отечественных люминесцентных ламп были созданы в 1936—1940 гг. группой московских учёных и инженеров под руководством С. И. Вавилова.

Особый класс искусственных источников света, не являющихся тепловыми, составляют устройства, называемые светодиодами. Они широко применяются для производства ёлочных гирлянд, ночников, детских игрушек и т. д.

Кроме источников света мы видим тела, которые сами по себе источниками света не являются. Почему мы видим дома и машины, мебель и окружающих нас людей? Если тело освещено каким-либо источником света, то излучение, идущее от него, попав на это тело, меняет своё направление. Свет отражается от поверхности тела, и человеческий глаз реагирует именно на этот отражённый свет. Именно поэтому в темноте, в отсутствие источников света, предметы становятся невидимыми. Почему видна Луна, которая сама не является естественным источником света, ещё в V в. до н. э. объяснил Демокрит. Мы видим Луну потому, что видим свет Солнца, отражённый от её поверхности.

Павел Николаевич Яблочков (1847—1894) — учёный, изобретатель. В 1876 г. П. Н. Яблочков получил первый в мире патент на изобретение электрической лампы. Лампу П. Н. Яблочкова в Европе современники называли «русский свет», в России — «русское солнце».

Александр Николаевич Лодыгин (1847—1923) — русский электротехник, изобретатель лампы накаливания. В 1874 г. получил патент на своё изобретение. А. Н. Лодыгин впервые превратил лампу накаливания из физического прибора в практическое средство освещения.

Вы смотрели Конспект по физике для 9 класса «Свет. Источники света».

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *