для чего нужен шатун

Шатун ДВС

Шатун — звено в цепи передачи возвратно-поступательного движения от поршней коленчатому валу ДВС, который преобразует линейное движение во вращательное в кривошипно-шатунном механизме.

Что такое шатун.

Шатун ДВС — это простая конструкционная механическая деталь или, как его еще называют, тяговое дышло, соединяющее поршень посредством поршневого пальца и коленвала посредством шатунной шейки.

Бывают также, по конструкционной особенности, шатуны залитые баббитом. В таких шатунах зазор регулируется выемками пластин половинками шатунов. Такие шатуны, в основном устанавливаются в компрессорах и тихоходных двигателях внутреннего сгорания.

Бывают шатуны из алюминия. Такие шатуны без защитного антифрикционного слоя и не подлежат ремонту. Устанавливаются в пусковых двигателях.

Во всех двигателях внутреннего сгорания, в которых есть поршни и коленчатый вал, устанавливаются шатуны, кроме мотора Баландина (вместо шатуна для передачи движения используется ползунок).

Из чего сделан шатун

Шатуны ДВС делаются из стали методами ковки и штамповки. Для двигателей с высокой нагрузкой, это, например, гоночные авто и боллиды, шатуны могут выполнятся литьем титанового сплава.

Для ДВС массового производства шатуны изготавливаются методом горячей штамповки из следующих среднеуглеродистых и легированных марок сталей:

Строение шатуна

Шатун ДВС состоит из:

Верхняя головка шатуна изготавливается цельной. Это соединительный элемент с отверстием для поршневого пальца. Верхняя головка не разъемная.

Силовой стержень выполняется цельным, без соединительных частей.

Нижняя головка шатуна — это место соединения шатунной шейки коленвала ДВС. Нижняя головка разборная, соединяются шатунными болтами. Во время ремонта вместо шатунных болтов нельзя ставить обычные, так как шатунные выдерживают большую температуру и нагрузку. Испорченную резьбу на шатунных болтах не восстанавливают методом нарезки, на заводе резьбу создают методом накатки, а не нарезкой плашкой. Это означает, что при поврежденной резьбе шатунных болтов, их следует заменить, а не ремонтировать.

В нижнюю головку в посадочное место устанавливают тонкостенные вкладыши (подшипники скольжения). Подшипники для нижней головки шатуна не отличаются по конструкции от коренных вкладышей коленвала.

В некоторых шатунах имеются специальные отверстия для прохождения моторного масла к подшипнику скольжения.

Для подачи масла к верхней головке, в некоторых видах предусмотрено смазывающее отверстие. Силовой стержень дизельных двигателей более толще, массивнее.для чего нужен шатун

1 — шатунный болт; 2 — крышка; 3, 4 — нижний и верхний шатунные вкладыши; 5, 8 — нижняя и верхняя головки шатуна; 6 — корончатая гайка; 7 — стержень шатуна; 9 — втулка (гильза); 10, 11 — штифты; a — канал; б, в, г — стержень, конусный поясок и головка шатунного болта; д, е — дугообразные канавки; ж, и, о — радиальные отверстия; з, м — холодильники; к, л — кольцевые канавки; н — короткая канавка; п — выемка под штифт; р — лыска.

По конструкции строение шатунов классифицируют на:

Двутавровые используются в автомобильных двигателях внутреннего сгорания.

Круглые шатуны применяются в двигателях для судов.

Ромбические шатуны назначаются для двигателей к высокоскоростным гоночным автомобилям.

Кривошипные головки классифицируются на:

Шатуны с простыми кривошипными головками устанавливают в простые ДВС.

Шатуны с прицепными кривошипными головками используются в звездообразных и V-образных двигателях.

Шатуны с вильчатыми кривошипными головками применяются в V-образных и W-образных моторах.

Как работает шатун

Передает энергию движения шатуну в двигателе внутреннего сгорания энергия взрыва горюче-воздушной смеси в рабочей камере сгорания цилиндра. После того, как топливно-воздушная смесь воспламенилась, происходит толчок поршня от его верхней мертвой точки вниз до нижней мертвой точки поршня (в мертвых точках скорость движения равна 0). Так как поршень плотно соединен с верхней головкой шатуна поршневым пальцем, поршень толкает шатун вниз. Нижняя головка шатуна плотно закреплена на шатунной шейки коленчатого вала. Шатун при движении вниз проворачивается вокруг оси коленвала ДВС на 360 градусов и начинает обратное движение вверх. Это один цикл работы цилиндро-поршневой группы кривошипно-шатунного механизма.

Как стучит шатун

Для обеспечения вибраций близкой к нулю, шатуны изготавливаются как можно легкими. Облегчение веса может уменьшить прочность. Поэтому конструкторы ищут золотую середину.

В этом видео показано, как стучит шатун автомобиля Сузуки.

В этом видео показывается стук в работе мотора Ваз 2199 и как проверить стучат ли шатуна ДВС.

Если новые шатуны ДВС приходят по заказу в цельном виде, то их надо сломать. Ниже, на видео показано, как сломать новый шатун для Шевроле.

Источник

Шатун Двигателя. Что это такое, его поломки и их причины, способы восстановления

для чего нужен шатун

Товар по теме:

для чего нужен шатун

Антикоррозийная проникающая мультисмазка 4 в 1

Многокомпонентный состав смазки обеспечивает высокую проникающую способность в прикипевшие и заржавевшие соединения, заметно облегчает страгивание деталей.

Сочетание фрикционного воздействия с механическими многовекторными перегрузками приводит усиленному износу как самого шатуна, так и всего кривошипно-шатунного механизма двигателя. Результаты такой изношенности КШМ – падение мощности мотора, троение, неполное сгорание топлива, дым из выхлопной трубы, проникновение бензина или ДТ в картер с разбавлением масла и потерей его смазывающих свойств. Как снежный ком это влечет за собой новые задиры, усиление износа и ухудшение ситуации в геометрической прогрессии.

Чтобы избежать подобных проблем, необходимо регулярно проводить техобслуживание двигателя и особое внимание уделять шатунам со всеми их составляющими элементами, как одним из самых нагруженных деталей ДВС. Для этого не всегда нужно разбирать мотор, достаточно лишь знать его строение и принцип работы кривошипно-шатунного механизма, признаки распространенных неисправностей и способы профилактики их появления.

для чего нужен шатун

Конструкция шатуна и принцип работы КШМ

Назначение кривошипно-шатунного механизма в трансформации возвратно-поступательного движения поршней во вращение коленвала, которое передается на трансмиссию или вал отбора мощности в спецтехнике. По сути, вся мощность двигателя передается через шатуны, число которых зависит от типа ДВС и количества в нем цилиндров.

Шатун состоит из трех основных частей:

На силовой стержень приходится максимум нагрузок, которые действуют в продольном направлении и на излом в зависимости от положения шатуна в определенный цикл двигателя. На головки действует двойная нагрузка – механическая и фрикционная, поскольку такое сочленение испытывает силу трения между кривошипным кольцом и коленвалом внизу, а также между поршневой частью и пальцем поршня вверху.

Для снижения фрикционного износа в конструкции шатуна двигателя предусмотрено два подшипника трения. В кривошипную головку вставляют два подшипника скольжения (вкладыши), а в поршневую – втулку.

Поршневая головка

Верхний кольцевой элемент шатуна неразъемный и соединяется он с поршнем с помощью поршневого пальца, который может быть фиксированным или плавающим. При плотной фиксации в качестве антифрикционного уплотнителя используют биметаллическую или бронзовую втулку. Отверстие в головке должно быть немного меньше диаметра втулки, чтобы обеспечить сопряжение внатяжку.

В некоторых модификациях двигателей поршневой палец подвижен, для чего отверстие в верхней головке шатуна немного больше диаметра пальца. В такой конфигурации важно обеспечить достаточное количество смазки.

Верхняя часть шатуна двигателя имеет трапециевидную форму для увеличения опорной площади и снижения нагрузки на силовой стержень при передаче усилия от поршня на коленчатый вал.

Кривошипная нижняя головка

H3: Кривошипная нижняя головка

Нижний соединительный элемент шатуна – это разъемное в большинстве типов двигателей кольцо, которое предназначено для соединения с коленвалом. Одна часть кольца является монолитным продолжением силового стержня, а второе полукольцо крепится к первому двумя болтами. Реже для фиксации используют бандажные крепления или штифты.

Особенность сборки шатуна в недопустимости замены крышки нижней кривошипной головки на аналог иного производства, поскольку каждый элемент детали рассчитан производителем двигателя по массе и особенностям конструкционного материала. Крышка иного производства может отличаться по массе от оригинала, что приведет к разбалансировке всего кривошипно-шатунного механизма и неминуемой порче мотора.

Геометрия разъемного разреза кольца нижней головки шатуна зависит от типа двигателя. При вертикальной компоновке цилиндров такое сечение перпендикулярно вертикальной оси стержня. В двигателях с V-образной компоновкой цилиндров кривошипная головка шатуна рассечена под определенным (непрямым) углом к оси силового стержня.

Внутренняя поверхность кольца кривошипной нижней головки испытывает сильные фрикционные нагрузки. Чтобы уменьшить негативное влияние силы трения между кривошипом коленвала и нижней головкой шатуна устанавливают подшипник скольжения. Здесь важно наличие специальных смазок, которые работают в условиях сильного трения и высоких температур.

Наиболее подходящими для защитной антифрикционной смазки КШМ стали триботехнические составы – смесь мелких частиц керамики, металлов и других твердых веществ величиной не более трех микрон. Смазка с триботехнической присадкой позволяет защитить шатун, коленвал и другие детали двигателя от активного истирания, а также восстановить уже имеющиеся изъяны путем диффузионного восстановления деталей, входящими в трибосостав металлическими частицами.

Силовой стержень

Стержень – это каркас шатуна двигателя и его основной силовой элемент, передающий всю нагрузку и мощность от цилиндра к коленчатому валу. Он имеет форму сильно вытянутой трапеции, в основании и на вершине которой два кольца головок шатуна. В сечении силового стержня двутавр, благодаря чему деталь способна воспринимать продольные и поперечные нагрузки, в т.ч. и на изгиб, при минимальной металлоемкости.

Из чего он сделан?

для чего нужен шатун

От металлоемкости шатуна зависит месса всего кривошипно-шатунного механизма, а значит, и КПД двигателя. При этом вес каждого шатуна должен быть одинаковым. В противном случае не избежать вибраций, разбалансировки и падения мощности мотора с ускоренным износом всех его деталей. Однако здесь есть и обратная зависимость – чем меньше металлоемкость или масса КШМ, тем меньше его прочность и способность воспринимать высокие знакопеременные нагрузки. Другими словами, в этом вопросе должна быть «золотая середина».

Выбор конструкционного материала и способ производства шатуна зависит от типа двигателя. Для бензиновых ДВС используют более легкие и недорогие в производстве литые чугунные изделия. Для дизельных двигателей нужны более прочные и массивные шатуны из легированной стали, изготавливаемые по более дорогой технологии штамповки и горячей ковки.

Для двигателей спортивных автомобилей используют самые легкие шатуны из прочных сплавов алюминия или титана. Их вес примерно вполовину меньше классических стальных или чугунных, что увеличивает КПД мотора и снижает расход топлива.

Крышки шатунных головок и болты для них делают из высоколегированных марок стали, которые отличаются от обычных углеродистых сплавов более высоким пределом текучести – в 2-3 раза больше. Это важная характеристика для крышки нижней головки и ее крепежа, поскольку они испытывают сильные перегрузки именно на растяжение.

Почему стучит шатун? Причины и признаки неисправностей

для чего нужен шатун

Критический износ деталей – одна из основных причин неисправностей кривошипно-шатунного механизма двигателя. Неправильная эксплуатация автомобиля, некачественные горюче-смазочные материалы, несвоевременность и непрофессионализм проведения техобслуживания – все это приводит к появлению на вкладышах, втулках и самом шатуне признаков глубокого износа.

Стук шатуна из-за отработавших или поврежденных шатунных вкладышей несколько более глухой, чем звук от стучащего поршневого пальца. При этом источник стука находится в той части КШМ, в которой скрыта проблема – сверху из-за износа поршневой головки, а снизу из-за шатунных вкладышей или болтов крышки нижней головки. Определить какой именно из шатунов стучит можно путем поочередного отключения питания свечей при работающем двигателе.

Засорение масляных фильтров и маслоприемника – еще одна распространенная причина появления стука в шатунах двигателя. К этому может привести и некачественные горюче-смазочные материалы, улучшить которые можно соответствующими присадками, не нарушающими формулу и консистенцию масла.

Нередко при появлении проблем с системой смазки двигателя, которые привели к стуку шатунов, наблюдается синеватый дым. Это свидетельствует о проблемах не только в кривошипно-шатунном механизме, но и во всей цилиндропоршневой группе. Недостаточное количество масла или его плохое качество приводит к износу трущихся поверхностей колец поршней, цилиндров, коленвала и шатунов с появлением задиров и царапин.

Предотвратить износ и устранить уже имеющиеся дефекты могут специальные триботехнические присадки, которые не изменяют физико-механические и химические свойства масла, но благодаря своему трибосоставу способны защитить тонкой полимерной пленкой целые исправные детали и устранить следы износа путем диффузионного восстановления металла.

Как исправить стук?

для чего нужен шатун

Все шатуны в двигателе должны одинаково весить для предотвращения разбалансировки и появления новых мест критического износа и стука. При замене деталь необходимо взвесить и при наличии отклонения в большую сторону произвести стачивания металла с прилива на крышке нижней головки до достижения необходимой массы.

для чего нужен шатун

Антикоррозийная проникающая мультисмазка 4 в 1

Многокомпонентный состав смазки обеспечивает высокую проникающую способность в прикипевшие и заржавевшие соединения, заметно облегчает страгивание деталей.

Мультисмазка «Супротек» – профилактика и решение проблем с шатунами двигателя

Трибосостав «Супротек» по своей сути не является присадкой, поскольку он не меняет свойства моторного масла, а лишь дополняет его характеристики.

Трибосостав «Супротек» можно купить в удобной фасовке (баллончики по 270/200 мл) и использовать его самостоятельно в соответствии с несложной инструкцией. При этом цена триботехнической присадки несоизмеримо ниже ремонта двигателя, КШМ и даже отдельно взятого шатуна.

Источник

Шатун поршня: назначение, конструкция, основные неисправности

Смотрите также

для чего нужен шатун

для чего нужен шатун

для чего нужен шатун

для чего нужен шатун

для чего нужен шатун

Шатун передает энергию от поршня к коленчатому валу. При этом он совершает два вида движения: круговое и возвратно-поступательное. Первое происходит в месте соединения его нижней головки с коленвалом, второе – в зоне соединения верхней головки с поршнем. Вследствие такой конструкции шатун постоянно испытывает высокие нагрузки во время работы.

Шатун поршня состоит из следующих элементов.

для чего нужен шатун

Поршневая головка

Верхняя (поршневая) головка представляет собой цельную неразборную конструкцию, которая соединяется с поршнем при помощи пальца: плавающего или фиксированного.

В верхней головке плавающего пальца обычно расположены бронзовые или биметаллические втулки. Если их нет, палец свободно двигается в отверстии головки шатуна. Для того, чтобы данный механизм функционировал нормально, ему требуется достаточное количество смазки.

Чтобы обеспечить необходимый уровень натяга, фиксированный палец вставляется в цилиндрическое отверстие меньшего диаметра.

Так как на верхнюю головку действуют очень высокие нагрузки, она имеет трапециевидную форму. Это позволяет увеличить опорную поверхность при работе поршня.

Кривошипная головка

для чего нужен шатун

Нижняя (кривошипная) головка соединяет коленчатый вал и шатун. Многие шатуны обладают разъемной кривошипной головкой, что зависит от метода сборки двигателя. Крышку головки с шатуном соединяют болты, штифты или бандажное крепление.

На каждый шатун можно установить только ту крышку, которой он оснащался с завода, так как она обладает определенным весом и размером. При ремонте данную деталь заменить нельзя.

По расположению стержня головка может быть прямой или косой. Последняя характерна для V-образных двигателей и используется для уменьшения размеров силового агрегата.

В нижней части шатунной головки располагаются подшипники скольжения, схожие с коренными вкладышами коленчатого вала. Их изготавливают из стальной ленты, которая изнутри обработана антифрикционным материалом с высокими износостойкими характеристиками. Особенностью этого слоя является то, что он работает только в присутствии моторного масла, а в режиме «сухого трения» очень быстро истирается.

Покрытие может наноситься как на заводе-изготовителе, так и при дальнейшем обслуживании двигателя в условиях гаража или автосервиса. Для защиты подшипников скольжения и других деталей силового агрегата оптимально подходит антифрикционное твердосмазочное покрытие MODENGY Для деталей ДВС.

Чаще всего его применяют на юбках поршней, дроссельных заслонках, вкладышах распредвала, подшипниках скольжения.

MODENGY Для деталей ДВС обладает следующими преимуществами:

Повышает КПД двигателя

Снижает трение и износ

Защищает детали от задиров в режиме масляного голодания

Снижает расход топлива

Отверждается при комнатной температуре

Совместно с покрытием рекомендуется использовать Специальный очиститель‑активатор MODENGY. Он не только убирает разнородные загрязнения с поверхностей, но и образует пленку, улучшающую адгезию покрытия с основанием.

для чего нужен шатун

Силовой стержень

Силовой стержень многих шатунов имеет двутавровую форму и расширяется от верхней головки к нижней. В дизельных двигателях используются более прочные и массивные детали, чем в бензиновых. В спорткарах устанавливаются шатуны, изготовленные из алюминия. Благодаря такому решению снижается масса автомобиля.

Все шатуны должны иметь одинаковый вес, в противном случае усилятся вибрации при работе силового агрегата.

Из чего изготавливают шатуны?

Каждый производитель стремится уменьшить вес деталей КШМ и снизить производственные затраты. Но так как на шатуны в процессе работы двигателя воздействуют высокие нагрузки, уменьшать их массу нежелательно – это может пагубно отразиться на прочности изделий.

для чего нужен шатун

При массовом производстве шатуны для бензиновых двигателей изготавливают из специального чугуна методом литься. Это позволяет добиться практически идеального соотношения прочности и стоимости деталей.

В дизельных силовых агрегатах шатуны испытывают более высокие нагрузки, поэтому их производят из легированной стали методом горячей ковки или горячей штамповки. Получаемые детали прочнее, но при этом дороже литых.

В мощных автомобилях и спорткарах используются шатуны из титановых и алюминиевых сплавов. Они в два раза легче стальных и чугунных, что позволяет снизить вес двигателя и увеличить его оборотистость.

Большое значение играет конструкционный материал, из которого изготовлены болты крепления крышки шатунной головки. Их производят из высоколегированной стали, предел текучести которой в 2-3 раза больше, чем у обычной углеродистой.

Почему шатуны выходят из строя?

Основной причиной выхода шатунов из строя является износ деталей. Верхняя головка редко подвергается ремонту, а рабочий ресурс втулки нередко оказывается равен ресурсу самого двигателя.

Нарушение формы или разрушение шатуна может произойти вследствие гидроудара, попадания внутрь двигателя абразивных веществ и посторонних предметов, соударения головки блока и поршня.

для чего нужен шатун

Подшипники нижней головки могут выйти из строя вследствие недостаточного смазывания. Определить такую неисправность можно по замятию вкладышей, удлинению шатунных болтов, темно-синему окрасу шатунной головки и потемнению вкладышей.

К поломке шатуна приводит недостаточный уровень масла в двигателе, засорение масляного фильтра, загрязнение цилиндра абразивами и посторонними предметами.

Ремонт шатунов

Шатуны нуждаются в ремонте, если наблюдаются:

Износ зазора в верхней головке цилиндра

Износ поверхности и зазора в нижней части головки

Перед началом работ шатун тщательно осматривается, при помощи нутрометра измеряется диаметр детали, зазоры в верхней и нижней части.

для чего нужен шатун

Если все показатели в норме, менять шатун не потребуется. При деформации стержня отверстия головок перестают быть параллельными, что приводит к перекосу цилиндра. Об этом свидетельствуют повышенная шумность двигателя при работе на холостом ходу, следы износа на коленвале, головке шатуна, поршне и стенках цилиндра. Еще одним методом проверки шатуна на деформацию является его раскачка на специальной проверочной плите.

После проведения всех необходимых измерений приступают к ремонту.

Чтобы получить нужную геометрию зазора нижнего шатуна, необходимо убрать небольшое количество металла с поверхности крышки головки. После этого крышка ставится назад и фиксируется при помощи болтов.

Расточка отверстия головки по требуемому размеру производится на расточном или универсальном станке. После операции выполняется хонингование.

Если зазор под поршневой палец увеличен, бронзовая втулка под верхнюю головку меняется, и новая деталь принимает нужный размер. Очень важно, чтобы отверстия головки и втулки совместились. В этом случае масло не будет попадать на поршневой палец.

Шатунные вкладыши и юбки поршней рекомендуется дополнительно обработать антифрикционным покрытием.

Присоединяйтесь

© 2004 – 2021 ООО «АТФ». Все авторские права защищены. ООО «АТФ» является зарегистрированной торговой маркой.

Источник

Разрушители легенд. Двигатель внутреннего сгорания. Часть №6. Кривошипно-шатунный механизм. Часть №1. Шатун.

для чего нужен шатун

Вся история существования и развития двигателей внутреннего сгорания(ДВС) непрерывно связана с применением кривошипно-шатунного механизма(КШМ), без которого двигатели в давно и всем известном виде просто непредставимы. Поршень в цилиндре движется прямолинейно-поступательно и преобразовать это движение во вращательное без КШМ не представляется возможным.

Чего наворотили на основе КШМ за последние сто лет можно посмотреть здесь:

При всём кажущемся совершенстве конструкций на основе КШМ попытки создать двигатель без КШМ не прекращаются по сей день. Ничего путнего на горизонте мы пока не наблюдаем, но изобретателей это не останавливает.

Двухсотлетнее стремление избавиться от КШМ давно уже выродилось в самоцель и, похоже, народ давно позабыл(или никогда и не знал?)первопричину этих потуг. Почему же конструкторы всех мастей с маниакальным упорством продолжают опять и опять изобретать велосипед?
Чем так не угодил КШМ создателям ДВС?

Я уже давал ответ на этот вопрос в предыдущих своих статьях, но сегодня хочу остановиться на этом вопросе подробнее. Давайте ещё раз рассмотрим конструкцию КШМ.

Давление газов в цилиндре ДВС равномерно распределено по поверхности «камеры сгорания». Вектор силы этого давления НА ПОРШЕНЬ действует вдоль стенок цилиндра в район оси вращения коленвала. Поршень воздействует на кривошип через шатун, который поворачивается при вращении коленвала на довольно значительный угол — соответственно шатун передаёт на кривошип хоть и бОльшую, но только ЧАСТЬ давления газов. Кривошип в свою очередь преобразует в крутящий момент только ту ЧАСТЬ передаваемого шатуном усилия, которая направлена по КАСАТЕЛЬНОЙ относительно коленвала — таким образом теряя ещё значительную часть передаваемого усилия. Все силы, которые не преобразуются в крутящий момент на коленвалу — деформируют коленвал, шатун, стенки цилиндров, поршень, подшипники и всё прочее типа блока цилиндров — в итоге взаимокомпенсируются через механизмы двигателя и потому полезной работы не совершают. Пропадают зря.

Давайте проследим путь СИЛЫ давления газов на поршень до выходного вала ДВС.
Как видно из рисунка — в каждом КШМ имеется ДВА узла, манипулирующих силами давления газов:

для чего нужен шатун

Первый такой узел — это сочленение ПОРШЕНЬ-ШАТУН.
Максимальный коэффициент трансформации силы(далее КТС) давления газов через шатун возникает когда шатун расположен по оси силы давления — соответственно этот момент возникает только в ВМТ и НМТ. По мере отклонения шатуна от вертикали передаваемая на кривошип сила уменьшается по закону Pt=P1*cos(β) от 100% до некоего минимума, возникающего при повороте кривошипа на 90 градусов после ВМТ.
«Наука» теплотехника несколько извращённо трактует взаимодействие сил в этом сочленении.
Третий закон Ньютона пока ещё никто не отменял, но некоторые уже давно и успешно его забыли — сила действия ВСЕГДА равна силе противодействия. Именно поэтому НА САМОМ ДЕЛЕ боковая составляющая вызвана силой ПРОТИВОДАВЛЕНИЯ, действующей в ответ на силу ДАВЛЕНИЯ газов. Поскольку эти силы взаимодействуют под углом — то и «возникает» третья сила, в полном соответствии с законами сложения и разложения сил. В старых учебниках по ДВС ещё можно найти адекватные иллюстрации:

для чего нужен шатун

Чем сильнее отклоняется шатун — тем БОЛЬШЕ получается сила(N) давления поршня на стенки цилиндра.
Чем сильнее отклоняется шатун — тем МЕНЬШЕ получается сила(Pt), передаваемая через шатун на кривошип!

Максимальный угол отклонения шатуна напрямую зависит от соотношения ДЛИНЫ ШАТУНА к РАДИУСУ КРИВОШИПА. Чем длиннее шатун — тем меньше возникающий угол. Лучше всего когда шатун длиннее плеча кривошипа в 4 раза и более — максимальный угол отклонения шатуна тогда минимален.

Алхимики от двигателестроения шифруются и потому у них своя система координат — они манипулируют соотношением длины шатуна и рабочего хода поршня — это соотношение у них принято обзывать «R/S». Как часто бывает(или это специально делается?) — общепринятый термин в очередной раз всё путает. Рабочий ход поршня к углу отклонения шатуна никакого отношения, конечно же, не имеет. Но поскольку в силу конструктивных особенностей КШМ рабочий ход поршня ровно в два раза больше радиуса кривошипа — то и такое соотношение можно использовать.
Только зачем?
Я терпеть не могу, когда термин перевирает техническую суть.
Потому я не буду использовать термин R/S в своём рассказе.

При коротком(3R) шатуне угол отклонения шатуна от вертикали достигает 20 градусов и, соответственно, передаваемое на кривошип усилие в сочленении ПОРШЕНЬ-ШАТУН уменьшается процентов на 6-7. Энергия не берётся из ниоткуда и не исчезает в никуда — всё, что недополучит от поршня кривошип, всё это усилие будет впечатывать поршень в стенки цилиндра, что многократно увеличивает трение в цилиндро-поршневой группе(что тоже чревато увеличением потерь мощности) и существенно ускоряет износ.
Т.е. часть сил давления газов замыкается в двигателе накоротко уже на этом этапе.

Чем короче шатун — тем сильнее он отклоняется от вертикали при вращении кривошипа и тем больше «ГЕОМЕТРИЧЕСКИЕ» потери сил в сочленении ПОРШЕНЬ-ШАТУН:

для чего нужен шатун

для чего нужен шатун

Потому, как ни странно прозвучит — но именно длина шатуна обуславливает МАКСИМАЛЬНУЮ эффективность КШМ в целом! Подавляющее большинство двигателей имеет шатуны длиной 3-3.5R — соответственно за счёт сочленения ПОРШЕНЬ-ШАТУН двигатель с такой геометрией никак не может передать на кривошип больше условных 95% сил, воздействующих на поршень.

Даже 5% потерь уже готового к употреблению момента — это очень дофига. Это просто неприлично много. В потугах хоть как-то отыграть эти потери применяют смещение оси движения поршня(«дезаксиал»\»дезаксаж») — либо сдвигают точку крепления шатуна к поршню, либо сдвигают сами цилиндры в блоке так, чтобы шатун в зоне максимального давления газов был перпендикулярен(ну или хотя бы БОЛЕЕ перпендикулярен) днищу поршня и направлен строго вдоль вектора силы передаваемого через шатун давления:

для чего нужен шатун

Как видите — смещение уменьшает угол между шатуном и вектором силы давления газов в самом ответственном положении коленвала. За счёт этого средний момент, предаваемый шатуном на кривошип получается увеличить на 1-2 процента.
Это как бы немного, но не будем забывать, что это чуть ли не ПОЛОВИНА ПОТЕРЬ в сочленении ПОРШЕНЬ-ШАТУН. Соответственно при смещении оси движения поршня значительно снижается давление поршня на стенки цилиндра, уменьшается скорость поршня на рабочем такте, это в свою очередь приводит к уменьшению потерь на трение в цилиндре и к уменьшению износа ЦПГ. Уменьшается шум и нагрузки при перекладке поршня…
Но это всё ПРОИЗВОДНЫЕ от потерь в сочленении ПОРШЕНЬ-ШАТУН при отклонении шатуна от оси движения поршня. Я не буду влезать в дезаксиал глубоко — к сожалению он не решает всех проблем, а некоторые проблемы существенно усугубляет, увы.

Есть ещё одна проблема, которую вообще практически не озвучивают — это ДИНАМИЧЕСКИЕ потери. Дело в том, что шатун при работе двигателя движется по довольно замысловатой траектории. Длинный шатун(5R) перемещает поршень по очень близкой к синусоиде траектории. Так выглядит график ПЕРЕМЕЩЕНИЯ поршня на одинаковом коленвалу при разных шатунах(синяя кривая — при относительно длинном(5R) шатуне, красная при относительно коротком(3R) шатуне):

для чего нужен шатун

Как видите — отличия в кинематике поршня минимальны и непонятно о чём беспокоиться.
Но давайте посмотрим на график отклонения шатуна от оси движения поршня:

для чего нужен шатун

Как видите — максимальный угол отклонения шатуна отличается почти в два раза.
При длинном шатуне мы максимально теряем около 2% передаваемого момента(КТС=0.98), а при коротком — почти 6%(КТС=0.94). Т.е. ГЕОМЕТРИЧЕСКИЕ потери передаваемого момента в сочленении поршень-шатун из-за более сильного отклонения короткого шатуна выше в ТРИ РАЗА!

На самом деле можно взять шатуны и ещё длиннее длинного(тогда потери уменьшаются всё медленнее) и ещё короче короткого(тогда потери нарастают лавинообразно) — но в реальном двигателестроении даже рассмотренные крайности применяются редко, а лезть в галимую теорию я смысла не вижу — меня интересуют чисто практические вещи.

Понятно, что на кону всего-то-навсего 4% от крутящего момента двигателя, но это очень не мало и это всё ещё СТАТИКА, о которой я писал выше.

Давайте смотреть ДИНАМИКУ.
График СКОРОСТИ поршней и шатунов уже начинает вызывать тревогу:

для чего нужен шатун

Дело в том, что скорость поршней в цилиндрах сильно влияет на сопротивление и износ.
А оба этих параметра — обратная сторона потерь энергии на трение.

Как видно на графике — скорость движения поршневой группы минимальна вблизи верхней мёртвой точки и вблизи нижней мёртвой точки, а максимальна — посередине хода поршня. Т.е. поршневая группа при каждом обороте коленчатого вала два раза разгоняется максимально и два раза тормозится до нулевой скорости.
Понятно, что каждый разгон и торможение требуют затрат энергии.
При возрастании скорости в два раза — ускорения(а значит и затраты энергии на разгон-торможение) возрастают в четыре раза. А как мы видим на графике — максимальная скорость поршневой группы при коротком шатуне на 3% выше.

Давайте посмотрим на ускорения поршневой при разных шатунах:

для чего нужен шатун

Ускорение в ВМТ отличается на 11% и затраты энергии на возвратно-поступательно движение поршневой группы увеличатся пропорционально!

Вблизи НМТ картина ещё более интересная — там ускорение поршневой группы с коротким шатуном имеет сложный характер. На первый взгляд максимальное ускорение ниже, но дело в том, что там выше скорость изменения ускорения — РЫВОК. А рывок — это ещё более энергозатратная(и разрушительная!) штука, чем ускорение.
Кому интересны подробности — читайте например тут.

Вот кривая РЫВКА этих же поршней и шатунов:

для чего нужен шатун

Как видно из графика максимальные скорости изменения ускорения при идеально РАВНОМЕРНОМ вращении коленвала находятся в районе 60 градусов ДО ВМТ и в районе 60 градусов ПОСЛЕ ВМТ. При коротком шатуне есть два явно выраженных всплеска в районе 25 градусов ДО НМТ(разгонный рывок) и в районе 25 градусов ПОСЛЕ НМТ(рывок торможения).
В четырёхцилиндровом РЯДНОМ двигателе рывки всех 4 цилиндров накладываются друг на друга — ведь они происходят одновременно в двух цилиндрах — при движении поршня вверх, и одновременно в двух других цилиндрах — при движении поршня вниз. Ещё и воспламенение в одном из цилиндров в районе ВМТ накладывается синфазно каждый такт…
Именно поэтому вибрации четырёхцилиндрового двигателя максимальны по амплитуде и потому именно он считается самым неуравновешенным.

Дезаксиал серьёзно ухудшает эту картину.
Но без него современный КОРОТКОШАТУННЫЙ двигатель немыслим.
В итоге вибрации двигателей получаются настолько высокими, что производителям пришлось изобретать и внедрять балансирные валы:

для чего нужен шатун

Эти неуравновешенные валы вращаются с вдвое более высокими оборотами, чем коленчатый вал — таким образом они тоже создают вибрации, но эти вибрации рассчитывают так, чтобы они действовали в противофазе к вибрациям коряво спроектированного КШМ и таким образом гасили их. Вот так производители «успешно» борются с проблемами, которые сами же и породили.
Правая рука не ведает, что вытворяет левая?
В результате внешних проявлений почти нет — трясётся короткошатунный двигатель не сильнее нормального длинношатунного, но внутри такого двигателя бушуют страсти — повышенные ударные нагрузки на коленвал и поршневую, значительные дополнительные вес и инерционные нагрузки, высокие ударные нагрузки на кучу дополнительных узлов — всё это приводит к ускоренному износу и повышенному расходу топлива…

Маниакальная страсть производителей ширпотребовских двигателей снять максимальную мощность с объёма завела индустрию в патовую ситуацию.
Мощность — это обороты.
Производители в погоне за оборотами(читай — за литровой мощностью) пошли по самому лёгкому пути — максимально снизили вес и РАЗМЕРЫ цилиндро-поршневой группы. Ну и получили что получили.
Паспортной МАКСИМАЛЬНОЙ мощности до сих пор приносят в жертву и момент, и экономичность, и ресурс.

При увеличении оборотов в 10 раз — скорости поршневой группы увеличиваются в 10 раз, ускорения увеличиваются в 100 раз, а рывок — в 1000 раз. Соответственно лавинообразно увеличиваются ДИНАМИЧЕСКИЕ потери момента, которые просто обязаны пагубно отражаться на итоговом КПД двигателя в реальной работе. Особенно на высоких оборотах. Но считать их я не буду — это уже высшая математика, а мне бы с арифметикой двигателя разобраться для начала…

На картинках даже в современных учебниках по ДВС нарисованы двигатели в тех пропорциях, какими их представляли себе инженеры начала прошлого века — они-то понимали толк в том, что делали. Но в жизни мы подобные пропорции найдём разве что в судовых и локомотивных двигателях.
Ну и разумеется — в двигателях Формулы-1, которым приходится крутиться с оборотами под 22000, из-за чего в них все эти современные извращения просто недопустимы…
Легковое же двигателестроение уже давно заблудилось в трёх соснах — современные двигатели ВСЕ короткошатунные и короткоходые — и бензинки и дизеля.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *