для чего нужен триггер шмитта
Для чего нужен Триггер Шмитта
представляет собой импульсное устройство с двумя устойчивыми состояниями. Особенность триггера в том, что он реагирует (меняет состояние) при определенном значении напряжения входного сигнала. Значения входных сигналов для перехода от высокого напряжения на выходе к низкому и от низкого к высокому различны (t/BXl >• UВХ2, рис. 3.6, а). Разность между этими напряжениями называют напряжением гистерезиса. Напряжения, при которых триггер Шмитта меняет состояние, часто называют еще пороговыми.
Работа //(-триггера определяется следующей таблицей состояний:
Рис. 3.6. : а — временная диаграмма работы; б — условное графическое обозначение; в — схема с двумя ЛЭ
храняется, пока входное напряжение превышает UBX2 (считается, что входное напряжение также поступает от микросхемы ТТЛ и не превышает 5,5 В). Когда входное напряжение станет ниже UBX2, на выходе DD2 снова появится напряжение высокого, а на выходе DDI — низкого уровня, т. е. триггер Шмитта вернется в исходное состояние.
Оптимальное сопротивление резисторов указано на рисунке. Путем подбора сопротивлений R1 и R2 можно изменять в небольших пределах оба порога переключения. Сопротивление R1 влияет только на напряжение, при котором триггер Шмитта возвращается в исходное состояние. Диод VD1 может быть как германиевым, так и кремниевым.
Триггеры Шмитта применяются для формирования прямоугольных импульсов из сигналов с меняющейся амплитудой, когда входное напряжение превышает UВх1, — вплоть до момента, пока оно не станет меньше ■ Uвх2. Отметим, что при этом фронты импульсов становятся круче и удовлетворяются требования к фронтам ИМС ТТЛ. Этим свойством часто пользуются для формирования прямоугольных импульсов из импульсов с пологими фронтами,
Простейший триггер Шмитта может быть собран с помощью двух ЛЭ И—НЕ.
служит для получения прямоугольных импульсов из сигналов, меняющихся по амплитуде, или для увеличения крутизны пологих фронтов импульсов.
характеризуется наличием области гистерезиса, обусловленной различием в порогах переключения. Областью гистерезиса можно управлять в небольших пределах подбором сопротивлений резисторов R1 и R2 или только R1 (рис. 3.6, в).
Источник: Димитрова М. И., Пунджев В. П. 33 схемы с логическими элементами И — НЕ: Пер. с болг. — JL: Энергоатомиздат. Ленингр. отд-ние, 1988. 112 е.: ил.
Триггер Шмитта. Подробное описание нессиметричного триггера
Что такое триггер Шмитта
Слово trigger, в переводе на русский, значит, спусковой крючок. Функциональность устройства заключается в быстром переходе из одного устойчивого состояния в другое под внешним воздействием.
Большинство подобных устройств имеют заданное одинаковое значение для нарастающего сигнала. Для быстрорастущих сигналов – это не проблема. Но для сигналов, которые имеют очень медленное нарастание (шумовые, например) – колебания назад и вперед из положения off в on и обратно могут вывести из строя прибор. Триггеры Шмитта применимы для медленно изменяющихся сигналов или шума.
Это решение для случаев, когда сигнал на входе колеблется вокруг заданной точки. Схема для получения петли гистерезиса – это значит, что есть два набора точек, одни на низкой стороне, другие на высокой. Допустим, что на стороне низкого заданное значение составляет 2,0 В, а на стороне высокого – 1,5 В. Как только нарастающий входной сигнал (шум) попадает в точку 2.0 В, триггер переключит выход на 1. И сигнал на выходе останется на 1 до тех пор, пока входной сигнал не упадёт обратно до 1,5 В. В зоне от 1,5 и 2.0 В сигнал не переключается.
Самым простым примером применения триггера Шмитта является однополюсный двухпозиционный тумблер.
Перемещением рычага вправо соединяются выступы в центре. Цифровые схемы работают на 1 и 0 (вкл. и выкл.) Серединных значений при этом нет.
Схемы триггеров Шмитта
Существует много схем триггеров Шмитта, в которых необходимо включение элементов, имеющих фиксированные пороги на входе. Можно применять дискретные транзисторы, а также операционный усилитель (ОУ) с дополнительными компонентами, способствующими созданию петли гистерезиса.
На схеме изображено как устройство формирует импульс правильной конфигурации, при произвольном входном сигнале. Подобная схема применяется для преобразования медленно изменяющихся сигналов в импульсы с чётко очерченными краями. Это выполняется и на нескольких устройствах, и на одном ОУ.
Схема триггера Шмитта на транзисторах
Для несимметричного триггера Шмитта характерно несколько устойчивых состояний, когда переход из одного в другое происходит лишь при пороговых уровнях. Поэтому для такого триггера Шмитта характерна гистерезисная передаточная характеристика. В нижеприведённой схеме использованы биполярные транзисторы.

На данном чертеже показано, что триггер Шмитта включает в себя транзисторы VT1 и VT2, гальванически связанные между собой посредством резистора R5. Все элементы имеют общую питающую шину. R1 и R2 обеспечивают рабочий режим транзистора VT1. Организован делитель напряжения (два резистора). Конденсатор C1 служит для ускоренного переключения. Временные диаграммы входных и выходных напряжений устройства показаны на рисунке.

При подаче питания к устройству, он переходит в исходное состояние, когда транзистор VT1 закрыт, а VT2 открыт. В таком состоянии на выход устройства поступает некоторое напряжение Uэ, зависящее от элементов обвязки VT2. Имеются два порога срабатывания в триггере Шмитта (эта разность между напряжениями называется шириной петли гистерезиса).
Триггер Шмитта на логике
Это устройство особенное, потому что имеет по одному аналоговому входу и цифровому выходу. Самая простая схема триггера Шмитта основана на цифровых логических элементах, то есть последовательно включенных двух инверторах. Посредством резистивной обратной связи цифровой сигнал на выходе меняет входное напряжение переключения. Скорости нарастания сигнала на выходе и входе не зависят друг от друга, являясь для данной схемы постоянной величиной (зависящей от быстродействия логических вентилей). Схема триггера Шмитта, построенная на двух инверторах, изображена ниже.
Добавлена обратная связь, обеспеченная двумя резисторами, способствует быстрому изменению напряжения на выходе схемы при пересечении сигналом порогового напряжения. Соотношение между резисторами влияет на глубину этой связи. Тот факт, что часть сигнала с выхода схемы поступает на вход, приводит к тому, что вместо одного порога у схемы получается два. Один из них назван порогом срабатывания схемы (когда на выходе устройства формируется уровень «1»). Второй порог назван порогом отпускания (когда на выходе схемы формируется уровень «0»). Наличие двух порогов дало триггеру Шмитта второе название — схема с гистерезисом. Положительная обратная связь используется для того, чтобы установить лимит для достижения точки насыщения на выходе и, таким образом, можно изменить синусоидальное напряжение в цифровое.
Как определить низкие и высокие пороговые уровни на входе схемы? Логика определения этих пороговых уровней следующая. Необходимо выбрать верхний порог, который ниже минимального высокого уровня сигнала. Другими словами, это тот уровень, когда входной сигнал будет превышать каждый импульс на выходе. Аналогичным образом выбирается нижний порог, который соответственно выше низкого уровня сигнала. Разница между верхним и нижним уровнем является гистерезис. Чем больше гистерезис, тем больше будет восприимчивость схемы к шуму. Также необходимо учесть влияние времени.
На изображении хорошо видны два порога там, где на вход устройства подаётся синусоидальное напряжение.
Генератор на триггере Шмитта
Для построения генераторов применяются инверторы. Посему для обеспечения устойчивых сигнальных волн нужно вывести элемент на участок между «0» и «1». Далее, требуется обеспечить положительную обратную связь посредством конденсаторов.
Ниже изображена схема простейшего генератора импульсов.
Инвертор генерирует сигнал, который заряжает и разряжает конденсатор. Это работает, потому что на выходе инверторов «0» или «1» (низкие или высокие пороговые значения). Представим, что мы смотрим на цепи в какой-то случайный момент времени. По своей природе, триггера Шмитта на выходе инвертора или 0 В или 5 В (или переход между ними, который мы можем игнорировать). Если на выходе 0 В, а на выходе конденсатора выше, чем на выходе инвертора, конденсатор будет разряжаться через резистор до падения порогового напряжения триггера Шмитта. Конденсатор разряжается до тех пор, пока на входе инвертора сигнал достаточно низкий. При пересечении порогового значения, цикл начнётся заново.
Ключ, который делает эту работу на «гистерезис» в триггер Шмитта. В основном это означает, что точка поездки инвертора зависит оттого, что мы идем от высокого напряжения или низкого напряжения.
Заключение
Достоинство схем заключается в том, что входное напряжение меняется незначительно, когда выходное изменяется резко к высокому или низкому пороговому значению. Процесс проводится благодаря устройству обратной связи и делителя напряжения.
В чём польза триггера Шмитта? Они весьма востребованы тогда, где на входе присутствуют шумы. Применяется для преобразования входного сигнала в прямоугольные, пренебрегая высокочастотными помехами. Такая входная цепь осуществляет гистерезис, эффективно фильтрующий различные типы шумов. Использование устройства будет гарантировать, что на входе цифрового устройства всегда будет либо «один» или «ноль» и ничего между ними.
ElectronicsBlog
Обучающие статьи по электронике
Триггер Шмитта
Всем доброго времени суток! В прошлом посте я сказал, что рассматриваю последний логический элемент. Есть ещё один специфический логический элемент, специально рассчитанный на работу с входными аналоговыми сигналами. Такой элемент называется триггером Шмита.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Что же привело к появлению таких микросхем? Цифровые сигналы, которые проходят по линиям связи очень часто далеки от идеального импульсного сигнала, у таких импульсов фронты и срезы оказываются пологими, в результате форма импульса может стать похожей на треугольную или синусоидальную. К тому же любая ключевая схема (которыми являются логические элементы), при переключении некоторое время будет находиться в усилительном режиме, в результате чего помехи и шумы, которые накладываются на цифровой сигнал, окажутся усиленными. В результате такой цифровой сигнал с зашумлённым и пологим фронтом и срезом непригоден для переключения входов триггеров, регистров, счётчиков. Для того чтобы восстановить форму импульса цифрового сигнала и избавиться от влияния помех и начали использовать триггер Шмита.
Что же представляет собой триггер Шмита? Логические элементы со свойствами триггера Шмита имеют внутреннюю положительную обратную связь, глубина которой подобрана таким образом, чтобы получить передаточную характеристику со значительным гистерезисом. Давайте здесь остановимся поподробнее. Во-первых передаточной характеристикой называется зависимость выходного напряжения от напряжения на входе. Понятие гистерезиса довольно сложное поэтому проще всего объяснить его графически. Ниже представлены передаточные характеристики обычного инвертора и триггера Шмита.

Передаточные характеристики обычного инвертора (слева) и триггера Шмита (справа).
Передаточная характеристика обычного инвертора ТТЛ имеет входной порог UПОР = 1,3 В. Передаточная характеристика триггера Шмита двух пороговая. Если входное напряжение элемента триггера Шмита UВХ = 0 В (точка А), то выходное напряжение UOH = UВЫХ = 2,4 В (напряжение высокого логического уровня ТТЛ). При повышении UВХ до 1,7 В выходной сигнал скачком уменьшится (переходит от точки Б к В), где UOL = UВЫХ #gr; 0,3 В (напряжение низкого логического уровня ТТЛ). В этот момент входное напряжение становится равным напряжению срабатывания UВЫХ = UСРБ = UT+ = 1,7 В. Если входное напряжение теперь постепенно уменьшать (от точки Г), то при UВХ = 0,9 В выходное напряжение скачком перейдёт от низкого уровня к высокому (линия Д – Е). Это напряжение порога отпускания UОТП (UT-). При дальнейшем снижением UВХ до нуля возвращаемся в точку А передаточной характеристики. Таким образом, логический элемент, построенный на основе триггера Шмита, имеет пороги срабатывания и отпускания, между которыми существует зона гистерезиса UСРБ – UОТП = 800 мВ. Эта зона симметрична относительно порогового напряжения обычного элемента ТТЛ.
Наличие гистерезиса приводит к тому, что любые помехи цифрового сигнала с амплитудой, меньшей величины UСРБ – UОТП = 800 мВ, отсекаются, а любые фронты и срезы, даже самые пологие, преобразуются в крутые фронты и срезы выходного сигнала.
Обозначение триггера Шмитта
Для чёткого распознавания элементов с триггерами Шмитта, их включили в отдельную серию ТЛ цифровых микросхем. В данной серии представлены три вида триггеров Шмита, представляющие собой инверторы (ТЛ2 – 6 инверторов), элементы 2И-НЕ (ТЛ3 – 4 элемента) и элементы 4И-НЕ (ТЛ1 – 2 элемента). Графическое обозначение триггера Шмита имеет вид показанный ниже.

Условное графическое обозначение триггеров Шмита (инвертор и 2И-НЕ): DIN (слева) и ANSI (справа).
Применение триггера Шмитта
Наиболее часто триггер Шмита применяют в качестве формирователя сигнала начального сброса и установки при включении питания схемы. Такой сигнал необходим для приведения в исходное состояние микросхем имеющих внутреннюю память (регистры счётчики, микроконтроллеры). Схема такого формирователя приведена ниже

Схема формирователя импульса начального сброса и установки
Опишем работу данной схемы. Для формирования сигнала сброса и установки используется простая RC-цепочка. Напряжение на конденсаторе нарастает медленно и в результате на выходе триггера формируется положительный импульс.
Второе частое применение триггеров Шмита – это построение генераторов импульсов. В отличие от простых инверторов схема генераторов на триггере Шмита получается проще, так как используется всего один элемент, один конденсатор и один резистор, а использование двухвходового триггера Шмита позволяет реализовать управляемый генератор, когда на управляющий вход поступает лог. 1 генерация идёт, когда лог. 0 – отсутствует.

Схема управляемого генератора на триггере Шмитта.
И наконец, последнее применение триггера Шмитта, которое мы здесь рассмотри, состоит в подавлении так называемого дребезга контактов. Дребезг контактов состоит в том, что при замыкании и размыкании любого механического контакта формируются несколько паразитных коротких импульсов, которые могут нарушить работу цифровой схемы. Триггер Шмитта с RC-цепочкой на входе позволяет устранить эффект дребезга контактов, данная схема изображена ниже.

Схема подавления дребезга контактов на триггере Шмитта
Данная схема работает следующим образом, конденсатор заряжается довольно медленно, в результате чего короткие импульсы подавляются и не проходят на выход триггера Шмитта. Номинал верхнего резистора должен быть в 6 – 7 раз больше нижнего. Сопротивления выбираются порядка сотен Ом – единиц кОм. А ёмкость конденсатора зависит от того, какова продолжительность дребезга контактов.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Что такое триггер Шмидта
Что из себя представляет триггер Шмитта?
Триггер Шмидтта представляет собой логическую схему, которая использует гистерезис для применения положительной обратной связи к неинвертирующему входу компаратора или дифференциального усилителя. Это позволяет выходному сигналу сохранять свое значение до тех пор, пока вход не изменится достаточно, чтобы вызвать изменение в самом триггере.
Триггеры Шмидта обычно используются в приложениях для сравнения сигналов с целью устранения помех в цифровых цепях. Они особенно эффективны при удалении шума, вызванного контактным отскоком в переключателях. Основная функция триггера Шмитта заключается в удалении шумов в волновых формах, чтобы предотвратить колебания от непредсказуемых выходных изменений. Простая схема, которая выиграла бы от использования триггера Шмитта, может быть основана на светодиоде, который иногда включается при его активации кнопкой. Добавление триггера Шмитта в эту схему упростит определения уровней сигнала ВКЛ и ВЫКЛ, и светодиод не будет мерцать при включении или отключении.
Принцип работы триггера Шмидта
Триггеры Шмидта имеются в разных устройствах из-за необходимости уменьшения шума в схемах, особенно в цепях, которые должны взаимодействовать между аналоговыми и цифровыми средами. Хотя большинство триггеров Шмитта входят в дискретные сборки или включены в логические ИС, вы все равно можете сами понять, как работает триггер Шмитта. Ниже показана диаграмма сигналов, которая наглядно демонстрирует принцип работы триггера Шмитта.
Отто Шмитт
Триггер Шмитта, как и многие схемы, был назван в честь своего изобретателя Отто Шмитта. Шмитт придумал свой триггер в 1937 году, который он первоначально назвал «термоэлектронным триггером». Но изобретение Шмитта оказало такое глубокое влияние на электронику, что все назвали его триггером Шмитта в честь создателя данного устройства. Отто Шмитту также приписывают изобретение катодного следящего устройства, дифференциального усилителя, стабилизированного усилителя, а также создание области биомедицинской инженерии.
Отто Шмитт жил с 1913 по 1998 год. Он получил степени бакалавра и доктора философии в области физики и зоологии. Он всегда был близок к электронике и математике и изобрел несколько типов схем, которые все еще используются сегодня. Среди них, например, можно выделить искусственные конструкции, имитирующие формирование импульсов нервных волокон. Шмитт был настолько талантлив в области электротехники, что выпустил восемь публикаций по электронике.
КМОП-триггер Шмитта — уникальный универсальный компонент конструкции
ОБЩИЕ СВЕДЕНИЯ.
Схема триггера Шмитта находит применение в самом широком спектре приложений, как аналоговых, так и цифровых. В интегральном исполнении логические элементы с триггерами Шмитта выпускаются во многих сериях. Такие элементы входят в состав как ТТЛШ (К531, К555, КР1533), так и КМОП-серий (КР1554, КР1564, КР1594 и др.). Универсальность ТТЛШ-триггера Шмитта ограничена узким диапазоном питающих напряжений (обычно 4,5 — 5,5 В), ограниченными возможностями согласования по уровням напряжения с другими сериями, низким входным сопротивлением и несбалансированной выходной характеристикой. Вообще говоря, триггер Шмитта может быть выполнен и на дискретных элементах (транзисторах, диодах, резисторах и т.д.), но если требуется найти компромиссное решение по нескольким параметрам одновременно, то это уже будет не простая задача. Кроме того, технология производства микроэлектронных изделий позволяет изготовить на одном кристалле несколько (обычно 4 — 6) триггеров Шмитта с практически одинаковыми параметрами. Триггер Шмитта, изготовленный по КМОП технологии, по сравнению с ТТЛШ-триггером Шмитта, обладает целым рядом преимуществ. Поэтому он используется в тех приложениях, где последний окажется неработоспособен. Эти приложения включают: согласование операционных усилителей с цифровыми схемами, передача и прием сигналов при работе на длинные линии, схемы преобразователей уровня и некоторые другие. Триггер Шмитта, выполненный по КМОП технологии имеет следующие преимущества:
АНАЛИЗ ТИПОВОЙ СХЕМЫ ТРИГГЕРА ШМИТТА.
Типовая схема логического элемента (на примере инвертора), построенного на базе триггера Шмитта, приведена на рис. 1. Рассмотрим принцип его работы, считая, что в начальный момент времени на вход “Input” подан нулевой потенциал напряжения.
В этом случае транзисторы VT1 и VT2 полностью открыты, а VT3, VT4 и VT5 — закрыты. Напряжение в точке “OUTint” практически равно напряжению источника питания. При этом VT6 открыт и работает как истоковый повторитель. Напряжение в точке соединения стока VT4, истока VT3, а также стока VT6 равно разности питающего напряжения и падения напряжения на сопротивлении канала транзистора VT6. Поскольку оба транзистора VT3 и VT4 в начальный момент времени закрыты, напряжение в указанной точке равно питающему. Если начать увеличивать напряжение на входе, а значит, и на затворах VT1, VT2, VT3, VT4, то при достижении порогового напряжения транзистора VT4, он начинает приоткрываться. При этом оба включенных транзистора VT4 и VT6 образуют делитель напряжения с потенциалом в точке их соединения равным половине питающего напряжения. Соответственно, этот потенциал “привязывает” исток транзистора VT3 к половине питающего напряжения. Когда входное напряжение начинает превышать половину питающего на величину порогового напряжения открывания транзистора VT3 этот транзистор начинает приоткрываться, инициируя тем самым процесс переключения всей схемы. Начиная с этого момента, даже незначительное приращение входного напряжения приведет к резкому снижению напряжения в точке “OUTint” до нуля. Когда напряжение в точке “OUTint” падает, истоковый повторитель VT6 закрывается, и напряжение на его стоке (точка соединения VT3, VT4, VT6) уменьшается, следуя за напряжением на затворе. Влияние VT6 в цепочке делителя напряжения VT4-VT6 снижается до нуля, приводя к еще более резкому спаду напряжения в точке “OUTint”. В это же время начинает приоткрываться транзистор VT5, поскольку потенциал на его затворе (в точке “OUTint”) быстро снижается. Открывание VT5 приводит к установке на истоке транзистора VT2 потенциала, близкого к нулевому, поэтому последний закрывается. В момент закрывания VT2, потенциал в точке “OUTint” лавинообразно снижается до нуля. Лавинообразное переключение схемы происходит благодаря единичному коэффициенту петли обратной связи, образуемой транзисторами истоковых повторителей.
Когда входное напряжение изменяется в обратном направлении — от питания до нуля, аналогичный процесс происходит с верхней секцией транзисторного каскада, и лавинообразное переключение происходит при достижении нижнего значения порогового напряжения. Инверторы, собранные на транзисторах VT7, VT8 и VT9, VT10 образуют защелку, которая стабилизирует потенциал в точке “OUTint”. Буферный инвертор на транзисторах VT11, VT12 предназначен для повышения нагрузочной способности триггера. Типичные передаточные характеристики показаны на рис. 2 и границы верхнего и нижнего гарантированных диапазонов допустимой ошибки на рис. 3.
ПРЕИМУЩЕСТВА ГИСТЕРЕЗИСА.
Гистерезисом называется различие в ответной реакции схемы под воздействием входного напряжения. Шумовой сигнал, который превышает пороговое напряжение переключения компаратора, может вызывать многократное переключение его выхода, если время ответной реакции компаратора меньше, чем время между ложными воздействиями сигнала. Триггер Шмитта имеет два порога компарации: амплитуда любого сигнала помехи должна превышать разницу пороговых напряжений для того, чтобы произошло многократное переключение состояния триггера. Для КМОП-триггера Шмитта при напряжении питания VDD=10 В, типовое значение разницы пороговых напряжений составляет 3,6 В, которого вполне достаточно, чтобы преодолеть воздействие практически любого ложного сигнала помехи на входе.
Компаратор, построенный на основе КМОП-триггера Шмитта, находит широкое применение для восстановления строго прямоугольной формы сигнала, транслируемого по длинной несогласованной линии связи. Пороговое напряжение компаратора задается равным половине амплитуды входного сигнала (рис. 4б). Это делается для того, чтобы предотвратить искажение длительности сигнала. Если по линии передачи транслируется импульс длительностью 4 мкс, то и на приемной стороне должен быть восстановлен импульс точно такой же длительности, иначе произойдет искажение сигнала. Если компаратор имеет пороговое напряжение выше половины уровня амплитуды сигнала, это приводит к уменьшению длительности положительных импульсов, и увеличению длительности отрицательных (рис. 4в). Это называется искажением вследствие расщепления уровней входного сигнала. Триггер Шмитта имеет как положительное VT+, так и отрицательное VT- смещение уровня порогового напряжения. Для КМОП-триггера Шмитта эти значения приблизительно симметричны относительно половины уровня амплитуды сигнала, поэтому длительность импульса равная 4 мкс в точности восстанавливается (рис. 4г). Несмотря на то, что восстановленный импульс получает задержку по времени, его длительность остается неизменной. Таким образом, обеспечивается высокая помехоустойчивость, и, благодаря наличию гистерезиса, искажения сигнала не происходит.
ПРИМЕНЕНИЕ КМОП-ТРИГГЕРА ШМИТТА.
Большинство примеров, приведенных далее, показывают, как используется КМОП-триггер Шмитта, чтобы упростить конструкцию или улучшить производительность. Некоторые схемотехнические решения невозможно построить с использованием триггеров Шмитта других серий, кроме КМОП.
На рис. 5а представлена типичная схема преобразователя сигнала синусоидальной формы в прямоугольные импульсы. Благодаря симметрии порогового напряжения относительно половины питающего напряжения, для такого триггера можно легко сформировать опорный потенциал с помощью двух резисторов. Высокое входное сопротивление упрощает выбор номиналов резисторов и развязывающего конденсатора. Поскольку КМОП имеют широкий диапазон питающих напряжений, КМОП-триггер Шмитта может работать в системе с двуполярным питанием (рис. 5б). Это привязывает середину порогового напряжению к нулю и позволяет подключить вход триггера Шмитта непосредственно к выходу операционного усилителя без развязывающего конденсатора.
На рис. 6 показан преобразователь “частота-напряжение”, который может работать с управляющим сигналом различной формы. Несмотря на то, что энергия колебаний различной формы отличается, выходное напряжение преобразователя зависит только от частоты колебаний. Поскольку амплитуда выходного сигнала КМОП-триггера Шмитта практически равна напряжению источника питания, постоянный размах сигнала, прикладываемый к обкладкам конденсатора C1, вызывает протекание тока через конденсатор, который зависит только от частоты. Положительная полуволна напряжения с выхода конденсатора через диод D1 закорачивается на общий провод. Отрицательная полуволна напряжения вызывает протекание тока инвертирующего входа операционного усилителя через диод D2 и преобразование его в среднее значение напряжения интегрирующей цепочкой C2-R2.
Поскольку амплитуда выходного напряжения КМОП-триггера Шмитта практически равна напряжению источника питания, то напряжение, прикладываемое к С2, равно напряжению источника питания.
Триггеры Шмитта находят широкое применение, когда из медленно изменяющегося входного сигнала необходимо сформировать прямоугольный импульс с большой крутизной нарастания напряжения. На рис. 7 показана типичная схема светового сенсора или ключа, управляемого светом. Высокое входное сопротивление КМОП-триггера Шмитта упрощает подачу напряжения начального смещения. Большинство фоторезисторов имеют темновое сопротивление порядка нескольких МОм и порядка нескольких КОм при ярком освещении. Поскольку КМОП схема имеет входное сопротивление порядка 1012 Ом, изменение выходного напряжения не оказывает никакого влияния на входной каскад. Поэтому, при выборе сопротивления резистивного делителя, входным сопротивлением КМОП-триггера Шмитта можно пренебречь.
Еще одним случаем применения КМОП-триггера Шмитта является простейший RC-генератор (рис. 8), построенный всего из трех элементов. Таким образом, с использованием одной микросхемы КР1564ТЛ2, содержащей шесть одинаковых триггеров Шмитта, можно построить шесть экономичных RC-генераторов. Скважность выходных прямоугольных импульсов близка к двум, благодаря хорошо сбалансированным входным и выходным характеристикам КМОП-схемы. Уравнение выходной частоты предполагает, что t1 = t2 ≥ t pd0 + t pd1.
Ранее мы видели, каким образом с помощью КМОП-триггера Шмитта повышается помехоустойчивость несбалансированной линии передачи. Рис. 9 показывает применение триггера Шмитта для сбалансированной или дифференциальной линии передачи. На рис. 9а показан элемент ИСКЛЮЧАЮЩЕЕ ИЛИ, входящий в состав микросхемы КР1564ЛП5 (74HC86), который также может быть построен на элементах И-НЕ микросхемы КР1564ЛА3 (74HC00). Если на линии появляется несбалансированный сигнал помехи, генерируемый в результате интерференционного взаимодействия или воздействия внешних источников шума, данная схема формирует сигнал ошибки.
Схема на рис. 9б представляет собой дифференциальный приемник сигнала, который восстанавливает сбалансированные передаваемые данные, но игнорирует несбалансированный сигнал. Если схемы, приведенные на рис. 9, использовать совместно, то детектор ошибки мог бы сигнализировать передатчику о необходимости приостановки передачи данных до момента восстановления сбалансированного сигнала. В это время приемник сигнала мог бы помнить последние правильно принятые данные, пока несбалансированный сигнал присутствует на линии. Когда сбалансированный сигнал восстанавливается, приемник начинает принимать уже правильные данные с того места, где произошел сбой.
Типовая и усовершенствованная схемы входной защиты показаны на рис. 10. Показанные на схеме диоды имеют обратное пробивное напряжение порядка 35В. Положительное входное напряжение может достигать такого значения, при котором еще не происходит пробоя обратно смещенного диода D2 и прямо смещенного D3, что в сумме составляет около 35В. Отрицательное входное напряжение может достигать значения, не превышающего суммарное напряжение пробоя обратно смещенного диода D1 и прямосмещенного D2, что в сумме также составляет около 35В. Также обеспечивается необходимая защита от разряда статического электричества.
КМОП схема может иметь линейные характеристики в широком диапазоне напряжений, если правильно рассчитана цепь формирования управляющего опорного потенциала. На рис. 11 показана простая схема генератора прямоугольных импульсов, управляемого напряжением. КМОП-инвертор используется в качестве интегратора, а КМОП-триггер Шмитта, — в качестве компаратора с гистерезисом. Инвертор интегрирует положительную разницу между пороговым и входным уровнями напряжения VIN.
На выходе инвертора формируется линейно нарастающее напряжение до момента достижения положительного порога триггера Шмитта. В этот момент, выход триггера Шмитта переключается в нулевое состояние, открывая транзистор через RS и ускоряя перезарядку конденсатора CS. Гистерезис удерживает выход в состоянии нуля до момента разрядки интегрирующего конденсатора C через резистор RD. Резистор RD должен быть намного меньшего номинала, чем RC, чтобы время сброса было незначительным. Выходная частота определяется следующим выражением:
Зависимость частоты от управляющего напряжения определяется производной по входному напряжению. Следовательно:
где знак “-” указывает на то, что выходная частота возрастает когда входное управляющее напряжение уменьшается относительно порогового напряжения инвертора. Выходная частота принимает максимальное значение, когда входное напряжение равно нулю, и уменьшается с ростом входного напряжения. Генерация колебаний прекращается при достижении управляющим напряжением 0,55VDD. Выходные импульсы генератора достаточно короткие, поскольку время сброса значительно меньше времени интегрирования.
С использованием триггера Шмитта можно строить простые удлинители импульсов. Схема одновибратора или ждущего мультивибратора, предназначенного для удлинения импульсов, показана на рис. 12. Положительный импульс, переключающий инвертор, вызывает появление на его выходе короткого отрицательного импульса, разряжающего конденсатор через диод D1. Это приводит к переключению триггера Шмитта в единичное состояние. Конденсатор должен быть достаточно малой емкости, чтобы за время действия короткого импульса выходной ток инвертора мог бы его полностью разрядить.
где ΔV=VDD для КМОП инвертора и ΔT — длительность входного импульса. Для каждого входного импульса, длительностью короче 100 нс, конденсатор может быть исключен, и резистор большого номинала образует с входной емкостью КМОП-триггера Шмитта интегрирующую RC-цепочку. Далее, когда на входе инвертора устанавливается нулевой потенциал, блокирующий диод предотвращает заряд конденсатора выходным током инвертора, и заряд происходит уже через подтягивающий резистор. Когда входное напряжение триггера Шмитта достигнет верхнего порога VT+, триггер переключится в нулевое состояние спустя некоторое время после завершения входного отрицательного импульса. Таким образом, достигается увеличение длительности импульсов.
ПРЕИМУЩЕСТВА ТРИГГЕРА ШМИТТА.
Триггер Шмитта, построенный с использованием дискретных элементов, схемотехнически достаточно сложное устройство. Впервые триггер Шмитта в интегральном исполнении был реализован в ТТЛ-сериях. Но относительно большие входные токи и несимметричность входных характеристик усложняют конструирование схем с использованием таких триггеров. Втекающий выходной ток уровня логического нуля значительно больше, чем вытекающий ток уровня логической единицы. Это приводит к отличию формы импульсов от меандра с коэффициентом заполнения 50%. Кроме того, узкий диапазон питающих напряжений затрудняет применение в схемах с напряжением питания отличным от 5 В, а также в схемах с двуполярным питанием.
КМОП-триггер Шмитта имеет очень высокое входное сопротивление с пороговыми напряжениями приблизительно симметричными относительно половины питающего напряжения. Допустима подача входного сигнала с амплитудой, превышающей диапазон питающего напряжения. Выходные токи уровней логического нуля и единицы практически одинаковы. Также амплитуда выходного сигнала практически равна напряжению источника питания. Такие преимущества КМОП-триггера Шмитта, как большая разница пороговых напряжений, широкий диапазон питающих напряжений, низкое энергопотребление, одинаковые характеристики изделий в пределах одной партии, делают триггер Шмитта уникальным универсальным компонентом для радиоэлектронных конструкций. Триггер Шмитта находит применение в интерфейсных схемах для согласования сигналов, восстановления уровней, подавления сигналов помех в условиях повышенного уровня шумов, детектирования уровней, благодаря наличию гистерезиса, преобразования уровней между логическими схемами различных семейств и во многих других приложениях. Применение КМОП-триггера Шмитта это еще один шаг к дизайну, ограниченному только воображением разработчика.










.gif)
.gif)
.gif)
.gif)
.gif)
.gif)








