для чего нужна дисперсия
Дисперсия
Опубликовано 25.12.2020 · Обновлено 07.01.2021
Что такое дисперсия?
Ключевые моменты
Понимание дисперсии
В статистике, дисперсия измеряет изменчивость от среднего или среднего. Он рассчитывается путем взятия разностей между каждым числом в наборе данных и среднего, затем возведения разностей в квадрат, чтобы сделать их положительными, и, наконец, деления суммы квадратов на количество значений в наборе данных.
Дисперсия рассчитывается по следующей формуле:
вариансе σ2знак равно∑язнак равно1п(Икся-Иксˉ)2пжчере:Иксязнак равнотче ятчас Дата поинтИксˉзнак равнотче месп оеллдтроянты пзнак равнотче нутбер ое дтроянты \ begin
Большой разброс указывает на то, что числа в наборе далеки от среднего и далеко друг от друга. С другой стороны, небольшая разница указывает на обратное. Однако нулевое значение дисперсии указывает на то, что все значения в наборе чисел идентичны. Любая отличная от нуля дисперсия – положительное число. Разница не может быть отрицательной. Это потому, что это математически невозможно, поскольку в результате квадрата невозможно получить отрицательное значение.
Особые соображения
Вы также можете использовать приведенную выше формулу для расчета дисперсии в областях, отличных от инвестиций и торговли, с некоторыми небольшими изменениями. Например, при вычислении дисперсии выборки для оценки дисперсии генеральной совокупности знаменатель уравнения дисперсии становится N – 1, чтобы оценка была несмещенной и не занижала дисперсию генеральной совокупности.
Преимущества и недостатки дисперсии
Статистики используют дисперсию, чтобы увидеть, как отдельные числа соотносятся друг с другом в наборе данных, вместо того, чтобы использовать более широкие математические методы, такие как распределение чисел по квартилям. Преимущество дисперсии заключается в том, что она рассматривает все отклонения от среднего одинаково независимо от их направления. Сумма квадратов отклонений не может быть равна нулю, и это создает впечатление отсутствия изменчивости данных.
Однако одним из недостатков дисперсии является то, что она придает дополнительный вес выбросам. Это числа, далекие от среднего. Возведение этих чисел в квадрат может исказить данные. Еще одна ловушка использования дисперсии заключается в том, что ее нелегко интерпретировать. Пользователи часто используют его в первую очередь для извлечения квадратного корня из его значения, которое указывает стандартное отклонение набора данных. Как отмечалось выше, инвесторы могут использовать стандартное отклонение, чтобы оценить, насколько стабильна прибыль с течением времени.
Краткая справка
В некоторых случаях риск или волатильность могут быть выражены как стандартное отклонение, а не как дисперсия, поскольку первое часто легче интерпретировать.
Пример отклонения
Возведение этих отклонений в квадрат дает 25%, 225% и 400% соответственно. Если мы сложим эти квадраты отклонений, мы получим 650%. Если разделить сумму в 650% на количество возвратов в наборе данных – в данном случае три, – получится дисперсия 216,67%. Извлечение квадратного корня из дисперсии дает стандартное отклонение доходности 14,72%.
Что такое дисперсия в статистике
Статистика, в частности, оперирует рядами данных, характеризующих какой-либо признак, явление. Интересует их изменение.
Вариация представляет собой отличие величин одинакового показателя у разных предметов. Ее изучение позволит понять причины отклонений от нормы, анализировать их и в какой-то мере прогнозировать. Также станет возможным выявить факторы, влияющие на значения, отсеяв случайные.
Характеристики равномерного распределения представлены на картинке:
При значительном объеме статистики, средняя величина очевидно близка к нормальной. Об этом говорят и законы распределения. Отклонения от нее будут являться объективной характеристикой.
Только вот отрицательные значения этих разбросов будут сбивать с толку при расчетах, погашая положительные. А оставлять лишь модули – для математика не корректно. Напрашивается возвести в четную степень, а именно – во вторую.
Решение оказалось не только удобным. Оно открыло бо́льшие возможности в изучении отклонений. А важны именно они, поскольку сама по себе средняя мало что дает.
В качестве одного из важных показателей вариации, вводится понятие «дисперсия» – усредненный квадрат отклонений численных значений каких-либо событий от средней величины.
Никакого наглядного смысла величина не несет. Другое дело, среднее квадратическое отклонение – корень квадратный из дисперсии.
Виды дисперсии дискретной случайной величины
Для анализа данных цифр в таком виде недостаточно. Гораздо больше можно выжать из последовательности, если разбить ее на группы по определенному признаку.
Общая дисперсия
Как можно заметить, вычисленная по приведенному выше определению величина характеризует отклонения в целом. Без учета определяющих вариацию факторов. Вернее, с учетом всех, включая совершенно случайные. Поэтому и называется «общей» и рассчитывается по формулам, указанным ниже.
Простая дисперсия, без разделения на группы:
Или в несколько преобразованном виде:
Взвешенная дисперсия, для вариационного ряда:
где xi – значение из ряда;
fi – частота, количество повторений;
n – число вариантов.
Черта сверху указывает на среднюю величину.
Межгрупповая дисперсия
Характеризует систематическое отклонение, возникающее из-за фактора, по которому производилось выделение признаков в группы. Поэтому также называется «факторной».
Как найти данную дисперсию? По формуле:
где k – количество групп;
nj – элементов в группе с индексом j.
Внутригрупповая дисперсия
Возникает по хаотичной причине, не связанной с причиной сделанной выборки. Неучтенный фактор. Еще обозначается как «остаточная».
Например, рассматривается количество выпущенных деталей за месяц каждым фрезеровщиком цеха.
В качестве критерия отбора в группу выбираем возраст оборудования. Он-то и не будет влиять на производительность внутри подборки: там станки у всех практически одинаковые.
Если вычислить среднюю величину от всех групповых,
то получим характеристику случайного разброса. Иными словами, составляющую вариации, зависящую от чего угодно, кроме фактора отбора.
Взаимосвязь
В соответствии с правилом сложения, общая D[X] включает средние выражения остаточной и факторной. И это логично, поскольку учитывает и случайное изменение в группе, и систематическое в факторной.
Свойства дисперсии
Если последовательность состоит из одинаковых чисел, то D[X] будет нулевой.
Уменьшение всех значений на постоянную величину на дисперсию не влияет. Иначе говоря, рассчитать σ 2 можно по отклонениям от фиксированного числа.
Уменьшение всех цифр в k раз приведет к падению D[X] в k 2 раз. Можно, например, иметь в виду значения в метрах, а результат вычислить в футах. Достаточно учесть один раз то, на что следует умножить.
Показатели вариаций
Кроме размаха (разницы максимального и минимального значений), среднего линейного и дисперсии, изменения описываются коэффициентом вариации:
Оценить масштаб разброса проще по относительной величине. Тем более, что измеряются в одних единицах.
Пример расчета дисперсии
Компания объявила конкурсный отбор для приема сотрудников. В качестве критерия принят стаж работы по специальности. Приведем исходные данные и расчеты.
По альтернативной формуле:
Заключение
Статистика оперирует значительными объемами данных. Вариация, как одно из основных понятий – не исключение. И дисперсия в качестве основной характеристики.
Для упрощения расчетов существует масса онлайн калькуляторов. Имеется упомянутый инструмент в MS Excel.
7 базовых статистических понятий, необходимых дата-сайентисту
Даже если вы хорошо программируете, но слабо ориентируетесь в статистике, вероятность выжить в Data Science очень низка.
У статистики есть несколько различных определений. Одно из самых простых и точных — это «наука о сборе и классификации цифровых данных». А если добавить к нему немного о программировании и машинном обучении, то получится неплохое описание основ Data Science.
В самом деле, в Data Science трудно найти область, где нет статистики в том или ином виде. Она нужна для:
Мы выбрали семь базовых концепций, без которых в Data Science точно не обойтись. К счастью, они не слишком сложны.
С некоторых пор утверждает, что он data scientist. В предыдущих сезонах выдавал себя за математика, звукорежиссёра, радиоведущего, переводчика, писателя. Кандидат наук, но не точных. Бесстрашно пишет о Data Science и программировании на Python.
1. Меры описательной статистики
Ключевые показатели, применяемые в описательной статистике (их ещё называют мерами или, если точнее, мерами центральной тенденции), — это:
Посмотрите это небольшое видео о среднем, медиане и моде на сайте Академии Хана — образовательного ресурса, который славится доходчивыми объяснениями. Там всё просто, на понятном русском языке.
Кроме трёх перечисленных, есть и другие статистические показатели — например, меры рассеяния. Главная из них — дисперсия, о ней ниже. Все они нужны, чтобы понять, какие перед нами данные и о чём именно они рассказывают.
2. Распределение
Внешняя форма данных, выраженная в мерах описательной статистики, даёт нам информацию об их характере. Это как в жизни: по фигуре, походке и одежде человека обычно можно догадаться о его поле, возрасте и даже профессии. В случае числовых данных мы догадываемся о распределении.
Термин пришёл из теории вероятностей, которая рассматривает любое событие в мире как имеющее ту или иную вероятность. Однородные события хоть и происходят с разной вероятностью, но подчиняются распределению, которое «раздаёт» им эти вероятности.
В Data Science распределение понимается обобщённо: это закон соответствия одной величины другой. Оно подсказывает нам, какой именно процесс может скрываться за данными, и то, насколько эти данные полны. Чуть подробнее об этом в нашей статье про математику для джунов.
Возможно, вы уже слышали про колокол нормального распределения, или гауссиану: она описывает процессы, где результат является суммой многих случайных величин, каждая из которых слабо зависит от другой и вносит сравнительно небольшой вклад.
Величина ошибок измерения в физике, длина когтей, зубов и шерсти в биологии, объёмы речных стоков в гидрологии — все эти показатели имеют нормальное распределение. Это, пожалуй, самое распространённое в природе и не только в природе распределение, поэтому оно и названо нормальным.
Распределение Пуассона тоже часто встречается в работе дата-сайентистов и аналитиков: это число событий за какой-то промежуток времени — при условии, что события независимы друг от друга и имеют некоторый порог интенсивности.
Это и число посетителей в торговом центре, и количество голов, забитых футбольной командой, и скорость роста колонии бактерий.
Существуют и другие распределения, в том числе довольно экзотические: Вигнера, Вейбулла, Коши. Они встречаются намного реже или преимущественно в каких-то специальных областях вроде квантовой физики. Тем не менее дата-сайентисту нужно знать графики, параметры и названия основных распределений, благо их не так много.
3. Семплирование
Предположим, вам требуется решить важную задачу: выяснить среднюю ширину морды домашних котов нашей страны. Прямой способ, то есть измерение всех домашних питомцев, невозможен по ряду объективных причин. Придётся ограничиться выборкой — взять какое-то число животных, измерить морды именно им и сделать выводы по итогам только этих исследований.
Но тут сразу же возникают вопросы:
Семплирование — это группа статистических методов и приёмов, отвечающих на эти вопросы. С помощью семплирования мы формируем нашу выборку так, чтобы она наилучшим образом отражала свойства генеральной совокупности — то есть свойства всех котов страны.
Иными словами, вы не можете измерить N первых попавшихся котов и обобщить результат для остальных. Выборка должна хорошо «сидеть» во всей популяции кошек, чтобы можно было делать обоснованные выводы. Такую выборку называют релевантной.
Кстати, статистика и котики — близнецы-братья. После выхода одноимённой книги Владимира Савельева мы говорим «статистика», а подразумеваем «котики», и наоборот. И смело рекомендуем эту книгу всем, кто дочитал до этого места.
В Data Science методы семплирования применяются при разработке, подготовке и оценке датасетов, чтобы они одновременно и были упорядоченными, и соответствовали реальности.
4. Смещение
Прочитайте нашу статью о создании простой модели машинного обучения. Она предсказывает город, в который вероятнее всего поедет турист, на основании его возраста, пола, места жительства, дохода и транспортных предпочтений. Такая рекомендательная система на минималках.
Смещение происходит, когда модель недооценивает или переоценивает какой-либо параметр. Представим, что модель из статьи выше отправляет всех краснодарцев в Париж — независимо от их дохода, предпочтений и других параметров. В этом случае мы скажем, что модель переоценивает значение параметра «Город проживания».
Чаще всего причиной смещения являются:
Когда мы неверно собираем данные, говорят о систематической ошибке отбора. Например, в прошлом веке многие считали, что во Вселенной больше голубых галактик, — впечатление возникало потому, что плёнка была более чувствительна к голубой части спектра.
Другая ошибка — ошибка меткого стрелка — происходит, когда мы вольно или невольно отбираем в выборку только схожие между собой данные, то есть фактически рисуем мишень вокруг места, куда попадём.
Причин, вызывающих смещение, так много, что Марк Твен заметил: «Существует три вида лжи: ложь, наглая ложь и статистика». Например:
Эти и другие ошибки смещения трудно выявить статистическими методами, поэтому нужно стараться избежать их до того, как вы начнёте сбор данных.
Если пить «Боржоми» уже поздно (датасет уже сформирован), обязательно спросите себя: «Не смещены ли мои данные?» — а они наверняка смещены, «Куда и почему они смещены?» и «Можно ли с этим жить?»
5. Дисперсия
Дисперсия — это величина, показывающая, как именно и насколько сильно разбросаны значения — например, предсказания модели машинного обучения или доход за рассматриваемый период. За точку, относительно которой эти значения разбросаны, берут истинное значение, целевую переменную или математическое ожидание, которое вычисляется теоретически и заранее.
Часто в качестве матожидания выступает обычное среднее арифметическое. Например, математическое ожидание количества очков при броске игрального кубика равно среднему арифметическому очков на всех гранях:
(1 + 2 + 3 + 4 + 5 + 6) / 6 = 21/6 = 3,5
Представьте себе тир, стрелка и мишень. Снайпер стреляет в стандартный круг, где попадание в центр даёт 10 баллов, в зависимости от удаления от центра количество баллов снижается, а крайние области дают всего 1 балл. Каждый выстрел стрелка — это случайное целое значение от 1 до 10.
Изрешечённая пулями мишень — отличная иллюстрация распределения. Дисперсия здесь — величина, обратная кучности попаданий: хорошая кучность означает низкую дисперсию, и наоборот.
6. Дилемма (компромисс) смещения и дисперсии
Смещение и дисперсия вместе составляют итоговую ошибку предсказания модели машинного обучения. В идеальном мире и смещение маленькое, и дисперсия низкая. На практике это связано в дилемму: уменьшение одной из величин неизбежно приводит к росту другой.
Если не вдаваться в детали, обучение модели — это построение функции, график которой лучше всего ложится на точки из тренировочного набора данных.
Модель может нарисовать нам довольно сложную и заковыристую функцию, график, который хорошо охватывает все точки в тренировочных данных. Но если наложить этот график на новые точки (то есть дать функции новые данные), она сработает хуже — так и получается смещение.
С другой стороны, обучение на разных тренировочных наборах или даже разных датасетах с большой вероятностью даст разброс в предсказаниях, то есть высокую дисперсию.
Более сложные модели дают низкое смещение, но чувствительны к шуму и колебаниям в новых данных, поэтому их предсказания разбросаны. Если при обучении наш снайпер будет учитывать незначимые факторы (вроде цвета мишени или направления магнитного поля Земли), то в другом тире, с другой винтовкой или в другую погоду точность его стрельбы упадёт.
Простые модели, напротив, упускают важные параметры и «бьют кучно, но мимо». Как другой снайпер, не приученный обращать внимание на ветер и расстояние до мишени.
В процессе настройки модели машинного обучения дата-сайентист всегда ищет компромисс между смещением и дисперсией, чтобы уменьшить общую ошибку предсказания.
Кстати, эта дилемма встречается не только в статистике и машинном обучении, но и в обучении людей. В исследовании 2009 года утверждается, что люди используют эвристику «высокое смещение + низкая дисперсия»: мы заблуждаемся, зато очень уверенно.
Учтите это, если захотите сделать свой ИИ более похожим на человека.
7. Корреляция
Когда изменения одной величины сопутствуют изменениям другой, говорят о корреляции. Главное, что необходимо о ней знать: корреляция не означает причинно-следственную связь.
Линейная корреляция — это когда изменения одной величины пропорциональны изменениям другой. Она может быть:
Статистическую связь между переменными исследуют с помощью корреляционного анализа. Его основная задача — оценить тесноту связи (это термин) между переменными, чтобы понять, какие переменные учитывать в модели, а какие нет.
И ещё раз, потому что действительно важно: корреляция ни в коем случае не означает причинно-следственную связь. Если два показателя скоррелированы, то далеко не факт, что они хоть как-то связаны.
Кстати, проект Spurious Correlations («Ложные корреляции») публикует графики корреляций между совершенно неожиданными статистическими показателями — например, количеством людей, утонувших в домашних бассейнах, и числом фильмов с участием Николаса Кейджа.
Имеет смысл время от времени заходить по этой ссылке с целью профилактики СПГС — синдрома поиска глубинной связи.
Заключение
Data Science — не просто комбинирование модных моделей в Jupyter-ноутбуке. Профессионалы в этой области глубоко понимают природу данных и то, как они могут помочь в принятии конкретных бизнес-решений.
Всё это изучалось в статистике задолго до того, как первый дата-сайентист набрал свой первый import pandas as pd. Статистика — фундамент всей современной науки о данных, включая машинное обучение, глубокие нейросети и даже искусственный интеллект.
В нашем курсе «Профессия Data Scientist» статистике уделено самое пристальное внимание. Вы не ударите в грязь лицом ни на тусовке статистиков, ни на настоящем DS-собеседовании. Приходите!
Polina Vari для Skillbox
Для отличия статистического термина от терминов из других отраслей (музыки, биологии) часто пишут этот термин через «е», а не через «э».
Описательная статистика (англ. descriptive statistics) занимается обработкой опытных данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Тренировочный набор, или обучающая выборка (англ. train set, training sample), — часть данных из датасета, по которой производится настройка или оптимизация модели машинного обучения.
Рекомендательные системы — программы, которые пытаются предсказать, какие объекты (фильмы, музыка, книги, новости, веб-сайты и др.) будут интересны пользователю.
Разницу между наблюдаемым значением и значением, предсказанным моделью.

































