для чего оксидируют катоды электронно лучевых индикаторов

Для чего оксидируют катоды электронно лучевых индикаторов

К ней информации относятся:

— информация о состоянии и режимах работы средств ЗРК;

— информация целеуказания, которая включает информацию о количестве, координатах и характеристиках целей, а также команды на действия по ним;

— информация о положении целей в пространстве;

— информация о качестве сопровождения целей и ракет следящими системами;

— информация о результатах решения задачи пуска.

Вся необходимая информация поступает либо в виде аналоговых сигналов целей и ракет с выхода приемного устройства РЛС и со следящих систем сопровождения целей и ракет, либо в виде цифровых кодов, поступающих по соответствующим каналам обмена.

Для отображения информации в ЗРК используются устройства отображения информации на электронно-лучевых трубках (ЭЛТ), цифровые табло и мнемотабло, а также индикаторы на светодиодах (сигнальных лампах).

5.12.2. Индикаторы на электронно-лучевых трубках

На индикаторах с линейной разверткой информация может отображаться с помощью амплитудных и яркостных отметок.

Таким образом отображаются параметры, связанные с дальностью (размеров зон поражения цели, дальности до цели, дальности до точки встречи ракеты с целью и т.п.). Размер развертки на экране при этом должен соответствовать диапазону измеряемой дальности, по положению отметок на развертке (амплитудной или яркостной) можно судить о дальности до соответствующего объекта. Для различных объектов можно использовать разные виды отметок.

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 1. Индикатор с линейной разверткой

На рисунке 1 приведены эпюры токов отклонения и подсвета, обеспечивающих получение на экране изображения:

Растровая двухкоординатная развертка удобна для обеспечения наведения следящих систем, поскольку позволяет отображать положение объекта по 2-м координатам (например, «дальность-угол»; «дальность-скорость» и т.п.) На рисунке 2 изображена структурная схема растрового индикатора.

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 2. Структурная схема растрового индикатора

Для формирования растровой развертки необходимо обеспечить формирование токов отклонения луча ЭЛТ пилообразной формы как по координате X, так и по координате Y. Строки растровой развертки могут располагаться либо вертикально, либо горизонтально, в зависимости от соотношения длительностей пилообразных токов.

для чего оксидируют катоды электронно лучевых индикаторов

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 3. Временные диаграммы, поясняющие принцип работы растрового индикатора

Например, на рисунке 3 приведены эпюры токов отклонения для получения растровой развертки с вертикальными строками. Для получения изображения растра на экране необходимо на катод ЭЛТ подать импульсы подсвета (импульсы фона) соответствующей длительности.

Если обеспечить формирование растра на экране синхронно с опросом каналов дальности и скорости многоканального корреляционно-фильтрового обнаружителя, то будет получен растр в координатах «дальность-скорость». Импульсы запуска развертки по координате X вырабатываются формирователем импульсов запуска, на вход которого поступают импульсы начала и конца опроса фильтров (ИНОФ; ИКОФ) из обнаружителя. Импульсы запуска развертки по Y формируются формирователем, который управляется импульсами начала и конца развертки дальности (ИНРД, ИКРД). В качестве импульсов фона используются импульсы запуска развертки по X.

Растровую развертку в координатах «дальность-угол» можно получить, перемещая элементарный растр Д-V на экране синхронно с перемещением луча антенны в пространстве. Т.е. для каждого углового положения луча антенны в пространстве (для каждого зондирования) на экране индикатора «дальность-угол» формируется элементарный растр Д-V, положение которого определяется угловым положением луча антенны в пространстве. Для этого необходимо изменять амплитуду тока подставки в соответствии с законом сканирования луча антенны при обзоре пространства.

Принцип действия знакового индикатора рассмотрим на примере индикатора обстановки, рисунок 4.

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 4. Структурная схема знакового индикатора и временные диаграммы, поясняющие принцип его работы

Информация на знаковых индикаторах отображается на экране ЭЛТ в виде амплитудных или яркостных отметок, а также в виде символов и знаков.

В зависимости от заданной координаты отметки (символа) формируется ток соответствующей амплитуды (Iкоорд.х; Iкоорд.у). Токи координат после усиления подаются на отклоняющие системы X и У, чем обеспечивается смещение луча ЭЛТ в точку с заданными координатами. Если на катод ЭЛТ при этом подать импульс подсвета, то в этой точке экрана появится яркостная отметка.

Для отображения символа необходимо подать на отклоняющее системы токи соответствующей формы. обеспечивавшие перемещение луча ЭЛТ по требуемому контуру (Iзн.х; Iзн.у). Эти токи формируются устройствами, изменяющими форму выходного тока в зависимости от входных сигналов, определяющих вид символа. В усилителях тока обеспечивается сложение токов координат и токов знака. Суммарный ток поступает на отклоняющую систему. Одновременно с формированием тока знака на катод ЭЛТ подается импульс подсвета. Яркость отметки на экране определяется амплитудой импульса подсвета.

Информация на экране индикатора кругового обзора (ИКО) отображается в координатах азимут – скорость в виде меток и линий. Эта информация представляет собой сигналы целей, которые отображаются в виде яркостных отметок.

Видимость вращения луча создается за счет последовательного формирования лучей (рис. 5), сдвинутых друг относительно друга на угол γ. Величина γ определяется длительностью всего периода по отношению к длительности одного импульса запуска развертки (ИЗР). Изменения наклона луча обеспечивается синусоидальной и косинусоидальной модуляцией амплитуд пилообразных токов подаваемых на ГПТ координат Х и Y. При поступлении выходной информации с радиоприемного устройства на усилитель подсвета на экране индикатора отобразится соответствующий символ.

для чего оксидируют катоды электронно лучевых индикаторов

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 5. Структурная схема ИКО и временные диаграммы, поясняющие принцип его работы

5.12.3. Индикаторы на знаковых и мнемотабло

Информация о типах и признаках целей и ракет, цифровые величины, характеризующие некоторые параметры (скорость и дальность цели, угол места луча антенны) могут отображаться на мнемотабло и на цифровых табло. Устройство табло и схемы сигнализации изображены на рисунке.

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 1. Устройство табло и схемы сигнализации

Информацию о состоянии аппаратуры (ВКЛ-ВЫКЛ; ИСПР-НЕИСПР) и режимах ее работы удобно отображать с помощью сигнальных ламп или светодиодов. Информационное слово, определенные разряды которого содержат информацию о состоянии и режимах работы аппаратуры, записывается в статический регистр, к выходам которого подключены соответствующие элементы индикации. При наличии «1» в каком-либо из разрядов информационного слова на соответствующий элемент индикации подается потенциал.

5.12.4. Устройства ввода информации

Для формирования управляющей информации в ИУ используются либо коммутирующие элементы, либо датчики цифрового кода. Команды управления состоянием и режимами работы аппаратуры формируются в виде многоразрядного цифрового кода. Информационное слово формируется в сдвигающем регистре, ко входам определенных разрядов которого подключены соответствующие органы коммутации (рис. 1). На группу органов коммутации подается опросный импульс (его называют импульсом адреса), который через замкнутые контакты коммутаторов поступает на входы разрядов регистра. Импульсом записи «1» записывается в те разряды, на входе которых присутствует импульс адреса.

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 1. Схема формирования команд

Для формирования команд управления состоянием и режимами работы аппаратуры используются либо коммутирующие элементы, либо датчики цифрового кода. Команды управления состоянием и режимами работы аппаратуры формируются в виде цифрового кода в фиксированных разрядах стандартного информационного слова. Информационное слово формируется в сдвигающем регистре, ко входам соответствующих разрядов которого подключены органы коммутации. На группу органов коммутации подается импульс опроса (его называют импульсом адреса). Импульс адреса через контакты включенных органов коммутации (кнопки, тумблеру, переключатели) поступает на входы соответствующих разрядов сдвигающего регистра. Импульсом записи ( для чего оксидируют катоды электронно лучевых индикаторов-зап.) в те разряды сдвигающего регистра, на входе которых присутствует импульс адреса, будет записана «1». Т.о. в сдвигающем регистре окажется записанным информационное слово, содержащее информацию о состоянии органов коммутации. Пачкой импульсов сдвига информация из сдвигающего регистра последовательным кодом «выталкивается» в числовую магистраль, связывающую индикаторные устройства с устройством управления режимами работы. При большом количестве органов, коммутации их объединяют в несколько групп, которые опрашиваются поочередно с использованием разных импульсов адреса.

Датчики кодов наведения (рис. 2) обеспечивают формирование цифрового кода, величина которого зависит от степени воздействия оператора. При отсутствии воздействия код должен иметь нулевое значение.

для чего оксидируют катоды электронно лучевых индикаторов

Рис. 4. Датчик цифрового кода

Датчик выполнен на базе вращающегося трансформатора, включенного в режиме фазовращателя (ФВ). На вход ФВ подается синусоидальное напряжение частотой 4 КГц. Фаза напряжения, снимаемого со вторичной обмотки ФВ, будет отличаться от фазы входного напряжения на величину определяемую углом поворота ротора ФВ. В усилителе-ограничителе синусоидальное напряжение преобразуется в меандр, поступающий на схему формирования кода (координат наведения). На второй вход схемы формирования подается счетные импульсы частотой повторения 1,6 МГц. Схема формирования представляет собой схему совпадения, которая формирует выходной импульс при совпадении счетного импульса с фронтом меандра. Выходные импульсы поступают на двоичный счетчик. Т.о. в счетчике будет записан код, величина которого определяется скоростью вращения ротора ФВ. (При вращении ротора ФВ будет изменяться положение фронта меандра, поэтому при большей скорости вращения ротора будет обеспечено большее количество совпадений счетных импульсов с фронтом меандра.) При неподвижном роторе во всех разрядах счетчика будет записан «О».

Для выдачи кода наведения в числовую магистраль код из счетчика параллельным кодом переписывается в сдвигающий регистр.

Подобные датчики используются в индикаторных устройствах для формирования кодов наведения по угловым координатам, дальности и скорости.

Источник

Для чего оксидируют катоды электронно лучевых индикаторов

Индикаторные приборы служат для преобразования электрических сигналов в визуально воспринимаемую информацию. В зависимости от назначения индикаторные приборы могут иметь разную степень сложности и базироваться на различных физических принципах. В настоящее время для отображения знаковой информации наибольшее распространение получили:

1.6.1 Электронно-лучевые индикаторы

Действие электронно-лучевых индикаторов основано на управлении сформированным потоком электронов, называемым электронным лучом. Эти приборы позволяют не только регистрировать электрические сигналы в их непрерывном виде (например, в осциллографе), но и получать изображение (в телевидении). Электронно-лучевыми индикаторами комплектуют многие измерительные и диагностические установки и системы визуального наблюдения за технологическими процессами производства.

Электронно-лучевой индикатор состоит из электронно-лучевой трубки, представляющей собой вытянутый в направлении луча стеклянный баллон с глубоким вакуумом, внутрь которого помещают источник свободных электронов и различные управляющие электроды. Утолщенная часть трубки, на которой фокусируется луч электронов, называется экраном. Изнутри он покрыт специальным слоем–люминофором, способным светиться при попадании на него электронов. Управление лучом осуществляется специальной электронной схемой с помощью электростатических или магнитных полей.

На рисунке 1.6.1.1 схематично показано устройство электронно-лучевой трубки.

Рисунок 1.6.1 1 устройство электронно-лучевой трубки.

Основным элементом электронно-лучевой трубки является прожектор. Он состоит из катода К, представляющего собой металлический стакан, подогреваемый нитью накала Н. Катод по периметру охвачен цилиндрическим модулятором М с осевым отверстием. Модулятор управляет интенсивностью потока электронов, срывающихся с катода. Электроны, прошедшие модулятор, попадают в электрическое поле, создаваемое несколькими анодами (А1 и А2), ускоряются и фокусируются в тонкий луч.

Управление отклонением луча на экране осуществляется с помощью двух пар отклоняющих пластин Х и Y, которые расположены перпендикулярно друг другу. За счет разности потенциалов пластины Х управляют лучом в горизонтальном направлении, а пластины Y – в вертикальном.

Основными характеристиками электронно-лучевой трубки являются:

– послесвечение – время, за которое восстанавливается цвет экрана после прекращения бомбардировки его электронами;

– разрешающая способность – минимальный диаметр светового пятна на экране;

– чувствительность – отношение отклонения луча к напряжению отклоняющих пластин (по вертикали и по горизонтали).

1.6.2 Вакуумно-люминесцентные индикаторы

Вакуумно-люминесцентный индикатор представляет собой электронную лампу – триод представленную на рисунке 1.6.2.1

Рисунок 1.6.2.1 Вакуумно-люминесцентный индикатор

Данный индикатор состоящую из накаливаемой током металлической нити – катода 1, металлической сетки 2 и анодов – сегментов 3, покрытых люминофором. Все элементы конструкции размещены в вакуумном стеклянном баллоне с выводами от электродов.

Принцип действия индикатора основан на преобразовании кинетической энергии электронов в видимое излучение люминофорного покрытия анодов-сегментов. Электроны, покинувшие катод вследствие термоэлектронной эмиссии, ускоряются полем сетки, положительно заряженной относительно катода, частично проходят сквозь сетку и бомбардируют сегменты анода, вызывая их свечение. Подключением анодов-сегментов в определенных комбинациях к источнику положительного напряжения можно получить требуемый светящийся знак. В зависимости от типа люминофорного покрытия анодов-сегментов индикаторы имеют свечение красного или зеленого цвета. Конструкция индикатора может быть как одно-, так и многоразрядной.

Вследствие низкого напряжения питания (20. 25В) и малой потребляемой мощности вакуумно-люминесцентные индикаторы хорошо сочетаются с интегральными микросхемами. В настоящее время их широко применяют в микрокалькуляторах, измерительных приборах и часах.

1.6.3 Газоразрядные индикаторы

Газоразрядный индикатор относится к ионным приборам тлеющего разряда и выполняется с холодным катодом. Индикатор имеет два или более электродов, помещенных в стеклянный баллон, заполненный инертным газом при давлении 0,1. 103 Па (рисунок 1.6.3.1).

Рисунок 1.6.3.1 Газоразрядный индикатор

При напряжении между электродами (анодом и катодом), достаточном для лавинообразной ионизации инертного газа движущимися в электрическом поле электронами и выбивания вторичных электронов с катода ускоренными электрическим полем положительными ионами, в пространстве между анодом и катодом возникает тлеющий разряд. Одновременно идет процесс рекомбинации электронов и положительно заряженных ионов. При этом выделяется энергия в виде фотонов, т.е. газ светится. Цвет свечения определяется составом газа-наполнителя.

Ионизация и рекомбинация наиболее интенсивно происходят вблизи катода, где концентрации свободных электронов и ионов максимальны. Поэтому наиболее интенсивное свечение наблюдается в прикатодной области.

Простейшие приборы этого типа – сигнальные индикаторы (неоновые лампы). Они представляют собой два металлических электрода, выполненные в виде дисков, стержней или коаксиальных цилиндров и помещенные в стеклянный баллон, заполненный неоном.

Пространство этих ламп вблизи катода светится оранжево-красным светом, наблюдаемым обычно через торец лампы. Для ограничения тока в неоновых лампах последовательно с ними необходимо включать балластный резистор, который может находиться в цоколе лампы.

Напряжение питания сигнальных индикаторов колеблется от 60 до 235В, рабочий ток – от 0,15 до 30мА. Неоновые лампы широко используют как сигнальные в устройствах автоматики, вычислительной техники и в приборостроении. Особенно часто их применяют в качестве индикаторов напряжения питания.

Газоразрядные индикаторы отличаются надежностью и простотой конструкции, потребляют мало энергии и позволяют получать высокие яркости и контрастность изображения.

Недостатком газоразрядных индикаторов является сложность их прямого подключения к интегральным микросхемам из-за высокого напряжения питания (100. 250В).

1.6.4 Полупроводниковые индикаторы

Принцип действия полупроводникового индикатора основан на излучении квантов света при рекомбинации носителей заряда в области р-n – перехода, к которому приложено прямое напряжение. К полупроводниковым индикаторам относится светодиод – полупроводниковый диод, в котором предусмотрена возможность вывода светового излучения из области р-n–перехода сквозь прозрачное окно в корпусе. Цвет определяется материалом, из которого выполнен светодиод. Выпускают светодиоды красного, желтого и зеленого свечения.

Рисунок 1.6.4.1 Полупроводниковые индикаторы

а) дискретные, б) знаковые, в) матрица точечных элементов

Полупроводниковые индикаторы подразделяются на дискретные (точечные), предназначенные для отображения цветной световой точки (рисунок 1.6.4.1, а), и знаковые – для отображения цифр и букв (рисунок 1.6.4.1, б). В знаковых сегментных индикаторах каждый сегмент представляет собой отдельный диод. Из 7 сегментов можно синтезировать цифры от 0 до 9 и 12 букв русского алфавита.

Существенно большими информативными возможностями обладают полупроводниковые знаковые индикаторы в виде матриц точечных элементов (рисунок 1.6.4.1, в), где 36 элементов матрицы сгруппированы в 5 колонок и 7 рядов (плюс одна светящаяся точка в 7 ряду). Катоды элементов каждого ряда соединены между собой и имеют общий вывод, также как и аноды элементов каждой колонки. Подавая напряжение на выводы выбранных ряда и колонки, можно вызывать свечение заданного элемента матрицы.

Матричные элементы позволяют отображать все цифры и буквы русского и латинского алфавитов. На их основе можно создавать буквенно-цифровые дисплеи, в частности, в виде бегущей строки.

Полупроводниковые индикаторы работают при прямом напряжении 2. 6 В и токе 10. 40 мА в расчете на сегмент или на точку. Их применяют для индикации в измерительных приборах, системах автоматики и вычислительной техники.

Достоинствами полупроводниковых индикаторов являются: возможность их прямого подключения к интегральным микросхемам благодаря низкому рабочему напряжению; большой срок службы; высокая яркость свечения и хороший обзор.

Основной их недостаток состоит в сравнительно высокой потребляемой мощности – 0,5…1 Вт на один сегментный светодиод.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля.

Источник

Электронно-лучевые индикаторы

Электронно-лучевым называют электронный электровакуумный прибор, в котором используется поток электронов, сконцентрированный в форме луча или пучка лучей.

для чего оксидируют катоды электронно лучевых индикаторов

ЭЛТ с магнитным управлением содержит такой же электронный прожектор, как и ЭЛТ с электростатическим управлением, за исключением второго анода. Вместо него применяют короткую катушку (фокусирующую) с током, надеваемую на горловину трубки вблизи первого анода. Неоднородное магнитное поле фокусирующей катушки, воздействуя на электроны, выполняет роль второго анода в трубке с электростатической фокусировкой.

Отклоняющая система в трубке с магнитным управлением выполняется в виде двух пар отклоняющих катушек, также размещаемых на горловине трубки (рис. 66) между фокусирующей катушкой и экраном (на рис. 66 показана одна пара катушек). Магнитные поля двух пар катушек взаимно перпендикулярны, что позволяет управлять положением электронного луча при изменении тока в катушках.

для чего оксидируют катоды электронно лучевых индикаторов

Заметим, что существуют ЭЛТ с электростатической фокусировкой и магнитным отклонением.

Основные параметры ЭЛТ. Цвет свечения экрана может быть различным в зависимости от состава люминофора. Чаще других используют экраны с белым, зеленым, синим, фиолетовым цветом свечения, однако имеются ЭЛТ с желтым, голубым, красным, оранжевым цветом.

Разрешающая способность — ширина светящейся сфокусированной линии на экране или минимальный диаметр светящегося пятна.

Яркость свечения экрана — сила света, испускаемого 1 м 2 экрана в направлении, нормальном к его поверхности.

для чего оксидируют катоды электронно лучевых индикаторов

Чувствительность к отклонению — отношение смещения пятна на экране к значению отклоняющего напряжения или напряженности магнитного поля.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Для чего оксидируют катоды электронно лучевых индикаторов

Москатов Е. А. Книга «Электронная техника. Начало»

10. Устройства отображения информации

10.1. Индикаторы

Для воспроизведения мнемонических символов, букв и цифр используют буквенно-цифровые индикаторы. Единичным называют индикатор, который отражает один символ или одну цифру. Одноразрядным называют индикатор, у которого выводы всех излучателей света не соединены друг с другом и выведены из корпуса для подключения к устройству управления. Сегментным называют индикатор, состоящий из нескольких излучателей, в котором отображение одного знака или символа обеспечивает один источник света. Матричным называют индикатор, внутри которого выводы излучателей света объединены определённым образом в матрицу, а подавая питание на определённую строку и столбец, инициируют свечение заданной ячейки. К важнейшим параметрам индикаторов относят угол обзора, число цветов, яркость, разрешение по горизонтали и вертикали, контрастность, потребляемую мощность, время отклика и прочее.

10.1.1. Светодиодные индикаторы

Светодиодные индикаторы выполняют из ряда размещённых определённым образом отдельных светодиодов. Подавая питание на некоторые полупроводниковые кристаллы светодиодных структур индикатора, получают излучение нужных светодиодов. Оно попадает непосредственно на прозрачный участок корпуса индикатора, или сначала на отражатели, свечение которых имеет вид знака или символа. Для питания светодиодных индикаторов необходимо постоянное напряжение от 1,6 до 3,5 В. Чтобы получить нужный цвет свечения, применяют светодиоды, генерирующие свет с необходимой длиной волны, или прежде чем выпустить из корпуса излучённый свет, пропускают через светофильтр.

Достоинства светодиодных индикаторов состоят в чёткой форме символов и знаков, в низком напряжении питания, в небольшой потребляемой мощности.

Недостаток заключён в малой яркости и довольно большом потребляемом токе.

10.1.2. Жидкокристаллические индикаторы

Жидкие кристаллы – это вещества, молекулы которых обладают высокой подвижностью, и склонны к упорядоченной ориентации в электрическом поле. Удельное сопротивление жидких кристаллов велико и достигает от 10 6 до 10 11 Ом. При комнатной температуре в отсутствие электрического поля ориентация молекул жидких кристаллов хаотична, ввиду чего вещество не прозрачно. При возникновении электрического поля происходит упорядочивание молекул, и в результате вещество становится оптически прозрачно.

Схематичное изображение в разрезе жидкокристаллического индикатора (или LED), работающего на отражение, дано на рис. 10.1.

для чего оксидируют катоды электронно лучевых индикаторов

На рисунке цифрами обозначено:

1 – стекло или подобный прозрачный материал;

2 – плёнки прозрачных электродов, образующих матрицу;

3 – жидкие кристаллы;

4 – металлическая поверхность.

Прозрачный электрод изготавливают в форме цифр или символов, в соответствии с тем, какое изображение желают получить. Между токопроводящими плёнками нужных в данный момент прозрачных электродов и металлическим основанием подсоединяют генератор, вырабатывающий переменное напряжение амплитудой от 2 до 15 В и частотой от десятков до тысяч герц.

Достоинства жидкокристаллических индикаторов заключено в чрезвычайно низком энергопотреблении и невысоком питающем напряжении.

Недостатки состоят в малом времени наработки на отказ, в обязательном наличии источника внешнего освещения.

10.2. Общие сведения об электронно-лучевых трубках

Электронно-лучевой трубкой (ЭЛТ) называют вакуумную электронную лампу, в которой поток электронов концентрируют в луч, направленный в сторону экрана. Обычно концентрацию (фокусировку) электронов в луч осуществляют либо воздействием электрического поля, либо магнитного поля. К разновидностям ЭЛТ относят: электромагнитные, электростатические, запоминающие, индикаторные трубки, кинескопы и прочие. ЭЛТ с электростатической фокусировкой используют в осциллографах в качестве устройства отображения осциллограмм.

Рассмотрим принцип действия электростатической электронно-лучевой трубки. Упрощённое устройство и подключение электронно-лучевой трубки с электростатическим управлением дано на рис. 10.2.

для чего оксидируют катоды электронно лучевых индикаторов

На рисунке цифрами отмечено: 1 – нить накала; 2 – катод; 3 – модулятор; 4 и 5 – первый и второй аноды; 6 и 7 – пластины отклонения луча вдоль осей Y и X; 8 – аквадаг; 9 – экран трубки. Резистор R1 служит для коррекции яркости изображения, а резистор R3 – для регулировки его фокуса.

Электронно-лучевая трубка состоит из трёх важнейших частей – электронной пушки, системы отклонения луча и экрана.

Электронная пушка включает нить накала, разогревающую никелевый катод, испускающий в результате эмиссии электроны, которые собирает в луч модулятор, состоящий из металлического цилиндра с маленьким отверстием в центре одного из торцов.

Чтобы разогнать электроны до необходимой скорости, используют систему из двух анодов. На второй анод подают много большее напряжение (от единиц до десятков киловольт), чем на первый анод (сотни вольт). Кроме увеличения скорости потока электронов, аноды осуществляют некоторую его фокусировку, действуя как электростатическая линза. Затем электронный луч проходит между пластинами вертикального и горизонтального отклонения луча. Если приложить постоянное напряжение к одной из систем платин, то поток электронов будет смещён в сторону той пластины, к которой был подсоединён положительный полюс питания.

Внутреннюю поверхность экрана, выполненного из стекла, покрывают люминофором, т.е. веществом, попадая в которое электроны выбивают кванты света. Аквадагом именуют электропроводящее покрытие графитом поверхности колбы ЭЛТ, которое электрически подсоединяют ко второму аноду с целью поглощения вторичных электронов, которые возникают при достижении электронным лучом люминофора.

В ЭЛТ с электромагнитным управлением электронный поток фокусируют не пластины горизонтального и вертикального отклонения луча, а фокусирующая и отклоняющая катушки, которые надевают на колбу трубки, порождающие взаимно перпендикулярные магнитные потоки. Аноды при электромагнитном управлении лучом служат исключительно для его ускорения.

В настоящее время электронно-лучевые трубки практически полностью вытеснены из бытовой аппаратуры. Однако их продолжают использовать в специальной аппаратуре, например, которая должна работать в условиях радиации, а также это могут быть радиолокаторы, системы наблюдения за промышленными роботами и др.

10.3. Жидкокристаллические дисплеи и панели

10.3.1. Общие сведения о жидкокристаллических дисплеях

Жидкокристаллические (LCD) дисплеи обладают таким же светоклапанным принципом действия, как и рассмотренные выше жидкокристаллические индикаторы. Они могут работать либо на отражение, либо на просвет. Жидкие кристаллы можно отнести к одному из трёх видов: смектическим, нематическим или холестерическим.

Смектические жидкие кристаллы формируют слои, в которых молекулы имеют упорядоченное положение.

Нематические жидкие кристаллы обладают хаотичным расположением молекул и непрозрачным для проходящего света дисплеем лишь до тех пор, пока молекулы не будут помещены в электрическое поле. Нематические жидкие кристаллы нашли широкое применение в одноцветных индикаторах и чёрно-белых дисплеях.

Холестерические жидкие кристаллы под воздействием электрического поля формируют слои, в которых молекулы смещены на один и тот же угол в пространстве. Это обстоятельство позволяет при наличии источника белого света получать цветное изображение на экране дисплея. Таким образом, в цветных жидкокристаллических дисплеях применяют холестерические жидкие кристаллы.

По причине того, что жидкие кристаллы не генерируют фотоны, для регистрации изображения необходим внешний источник освещения. Его располагают либо за жидкокристаллическим дисплеем, либо перед ним, и тогда обычно можно полагать, что он работает на просвет, либо сбоку дисплея, и в этом случае иногда допустимо считать, что дисплей работает на отражение. Если по конструктивным соображениям источник света размещён сбоку от дисплея, то благодаря системе зеркал излучение попадает на его рабочую зону.

10.3.2. Электролюминесцентная подсветка жидкокристаллических дисплеев

Электролюминесцентную подсветку жидкокристаллических дисплеев обеспечивают электролюминесцентные лампы (EL), свет которых попадает на полупрозрачный отражатель, а затем на противоположную от стороны обзора пользователем сторону дисплея. Для питания электролюминесцентной лампы необходим источник питания, вырабатывающий переменное напряжение частотой в районе 400 Гц и величиной обычно от 80 В до 100 В. При этом через лампу протекает ток примерно от десятка до нескольких десятков миллиампер. Следовательно, электролюминесцентная подсветка экономична и рекомендована для портативных устройств. Достоинства электролюминесцентной подсветки: равномерное освещение дисплея, высокая долговечность (время эксплуатации не менее 3000 … 5000 часов), толщина конструкции от 1,5 мм, типовой диапазон рабочих температур от 0 до 50 °C. Недостатки: чем выше яркость электролюминесцентных ламп подсветки, тем меньше время их наработки на отказ. А стоимость ламп весьма высока. Для питания электролюминесцентной лампы от низковольтного источника питания, например, аккумулятора или батареи, необходим импульсный преобразователь.

10.3.3. Светодиодная подсветка жидкокристаллических дисплеев

Светодиодную подсветку жидкокристаллических дисплеев обеспечивают наборы светодиодов (LED), излучение которых поступает на специальное устройство, проводящее и рассеивающее свет. Поступающий с него свет облучает заднюю сторону дисплея. Если необходим тонкий профиль устройства, то светодиоды крепят сбоку, а их излучение поступает к участкам дисплея по световоду. В случае большого дисплея такой способ плох появлением затемнённых участков. Чтобы этого не произошло, светодиоды размещают в виде матрицы с оборотной стороны дисплея, однако это приводит к невозможности получения сверхтонкого профиля. Для питания светодиодной подсветки берут питание от источника постоянного тока напряжением 5 В, а светодиоды включают через ограничивающие силу тока постоянные резисторы. Обычно постоянное напряжение, падающее на светодиодах подсветки, составляет 4,2 В. А сила тока лежит в пределах от 30 мА до 300 мА в зависимости от диагонали экрана. Достоинства светодиодной подсветки: низкое напряжение питания светодиодов, время наработки на отказ более 100000 часов. Недостатки: меньшая экономичность и на 2 … 3 мм большая высота профиля, чем для устройств электролюминесцентной подсветки.

10.3.4. Время отклика жидкокристаллических дисплеев и влияние температуры на их работу

Время отклика – это длительность времени, за которое при подаче питания на пиксель он успевает поменять текущий цвет на нужный цвет, допустим, в случае монохроматического дисплея, чёрный цвет на белый цвет, или белый на чёрный. Чем более коротким будет время отклика, тем лучше, т.к. тем меньше станут искажения при быстрой смене изображений.

При температуре свыше примерно +60 °C происходит необратимая деградация жидких кристаллов, приводящая к невозможности получения изображения. При температуре ниже ориентировочно –10 °C жидкие кристаллы перманентно уменьшают подвижность и от этого время отклика существенно возрастает. После увеличения температуры до уровня комнатной время отклика жидкокристаллического дисплея возрастает незначительно. Таким образом, даже после повышения температуры жидкокристаллический дисплей начнёт искажать изображения, на которых будут быстрые смены кадров.

Следовательно, для сохранения эксплуатационных качеств нельзя допускать переохлаждение и недопустимое повышение температуры жидкокристаллических дисплеев и индикаторов.

10.4. Плазменные панели

Плазменной панелью называют устройство, которое преобразует видеосигнал в изображение на экране, синтез которого обусловлен свечением люминофора под действием ионизации разреженного газа, вызванной холодной плазмой. Пиксель цветной плазменной панели состоит из трёх герметичных отсеков. Каждый отсек заполнен инертным газом и покрыт специальным флюоресцирующим люминофором. В каждый отсек подведены электроды, при приложении к которым переменного напряжения прямоугольной формы амплитудой в несколько киловольт происходит ионизация инертного газа и возникает плазменный разряд. При электрическом пробое газа напряжение между электродами существенно уменьшается до 100 В … 250 В. Плазма порождает ультрафиолетовое излучение, подпадающее на люминофор, которым покрыта стенка отсека, и вызывает его свечение в видимом спектре. Свечение люминофоров в каждом пикселе плазменной панели возможно красного, синего и зелёного цветов. Шины питания и шины от электродов в отсеках, образуют прямоугольную сетку, а пиксели расположены в её перекрестиях. Выводы с той стороны отсеков, которую будет обозревать пользователь, должны быть прозрачными. Чтобы токопроводящие шины были не заметны пользователю, их выполняют из почти прозрачной медно-хромовой или оловянно-хромовой плёнки, нанесённой на стеклянную плиту.

Недостатки: большая потребляемая мощность, выгорание люминофора после нескольких лет непрерывной эксплуатации, невозможность выполнения пикселей меньше 0,2 × 0,2 × 0,1 мм из-за неустойчивого возникновения плазмы. Время отклика плазменной матрицы больше, чем у электронно-лучевой трубки.

10.5. Органические светодиодные дисплеи

Органические светодиодные устройства (OLED) выполняют на основе многослойных токопроводящих люминесцирующих сопряжённых полимеров, например, полифениленвинилена. На прозрачной подложке расположен анод, выполненный из In4Sn3O12 обычно методом золь-гель технологии, к которому подсоединяют положительный полюс источника питания. Отрицательный полюс источника питания подключают к катоду, изготовленному из алюминия. Между анодом и катодом располагают эмиссионный материал. Между катодом и эмиссионным материалом возникают слои инжекции электронов и переноса электронов. Между анодом и эмиссионным материалом будут расположены слои переноса дырок и инжекции дырок. Протекание тока обусловлено движениями дырок из анода и электронов из катода в эмиссионный слой, где происходит рекомбинация, сопровождаемая эмиссией фотонов. Органические светодиоды объединяют в группы – пиксели, в которых излучения эмиссионных слоёв попадают на светофильтры красного, синего и зелёного цветов. При обратном включении источника питания не возникает выделения фотонов в эмиссионном слое.

Выводы органических светодиодов могут быть составлены в прямоугольную сетку, подавая напряжения на строки и столбцы которой, инициируют свечение требуемых пикселей. Дисплеи, организованные по такому принципу, называют пассивными. Диагональ пассивных дисплеев обычно не превышает 10 дюймов. В активных дисплеях каждый органический светодиод соединён с соответствующим транзистором, расположенным рядом с ним, и управление транзистором требует затрат небольшой мощности. Диагональ активных дисплеев может достигать десятков дюймов, однако стоимость изготовления активных дисплеев выше, чем пассивных. Таким образом, получают элементарные органические светодиоды, объединяя которые получают органические светодиодные дисплеи.

Достоинства: отсутствие необходимости подсветки, угол обзора в 180°, весьма точная цветопередача, малые масса и габариты. Также допустимо изготовление гибких дисплеев и дисплеев с толщиной всего в несколько миллиметров.

Недостатки: деградация пикселей при прямом попадании солнечного света, выход из строя люминофоров синего цвета через примерно тысячу часов непрерывной работы.

10.6. Дисплеи на углеродных нанотрубках

Углеродной нанотрубкой именуют образование, имеющее длину от нескольких десятков нанометров до нескольких десятков миллиметров, похожее на полую трубу радиусом примерно в несколько нанометров, у которой стенки сформированы углеродом и обладают толщиной всего в один атом. Углеродные молекулы нанотрубок, имеющие сферическую форму, называют фуллеренами, а имеющие форму длинных трубок, концы которых имеют окончание в виде гладких полусфер, именуют тубеленами.

10.7. Сенсорные экраны и классификация их типов

Сенсорным экраном называют устройство, монтируемое на обозреваемую пользователем поверхность дисплея, чувствительное к прикосновениям. При поднесении пальца, указки, электронного пера и т.п. к выбранному изображению на поверхности дисплея, специальный контроллер считывает координаты точки прикосновения, и отправляет эти сведения на последующую обработку. Отслеживание места касания может быть реализовано согласно ёмкостной, резистивной, инфракрасной, тензометрической, на ПАВ, или электромагнитной технологиям. Сокращение «ПАВ» означает поверхностные акустические волны.

Сенсорный экран, выполненный по ёмкостной технологии, состоит из стеклянной пластины, на которую сзади нанесена прямоугольная сетка из прозрачных токопроводящих электродов, к краям которой подсоединяют генераторы переменных напряжений. При прикосновении к определённой точке сенсорного экрана в её окрестности возрастает ёмкость, увеличиваются переменные токи утечки, сила которых пропорциональна расстояниям до краёв пластин. Измеряя силы токов, вычисляют положение точки прикосновения к сенсорному экрану. Достоинства: малое время отклика, составляющее обычно от 3 мс до 20 мс, число нажатий до выхода экрана из строя может превышать сотни миллионов, высокая механическая прочность. Недостаток: не реагирует на прикосновение непроводящим ток предметом.

Сенсорный экран, выполненный по резистивной технологии, имеет жёсткую пластину, покрытую резистивным веществом, перед которой располагают пластиковую мембрану, также покрытую резистивным веществом. Материалом пластины обычно выступает стекло или полиэстер. Между пластиной и мембраной размещают изолирующие гранулы. К краям пластины и мембраны подключают внешние источники питания. При нажатии на резистивный экран мембрана продавливает слой изоляции, что приводит к её соприкосновению с пластиной. Токи, потребляемые от генераторов, будут пропорциональны расстояниям до точки прикосновения. Резистивные покрытия и мембраны и пластины необходимы для отслеживания положения точки и по горизонтали, и по вертикали. Достоинства: низкая стоимость, чувствительность экрана к прикосновениям и проводящим, и диэлектрическим предметом. Недостатки: число нажатий до разрушения обычно на порядок меньше, чем у сенсорных экранов по ёмкостной технологии, а также ниже механическая прочность.

В сенсорном экране, выполненном по инфракрасной технологии, сетка инфракрасных волн образована инфракрасными светодиодами, размещёнными с одной стороны экрана по вертикали и горизонтали, и принимаемая фототранзисторами, установленными с другой стороны экрана. Если любой непрозрачный для инфракрасных волн предмет будет поднесён достаточно близко к сенсорному экрану, и поглотит или отразит падающее на фототранзистор излучение, то система отреагирует и определит координаты точки прикосновения. Достоинства: чувствительность экрана к прикосновениям любым предметом, задерживающим инфракрасное излучение. Недостатки технологии: большое время отклика, высокая стоимость, возможность использования лишь для плоских дисплеев, низкая разрешающая способность.

Сенсорный экран, выполненный по технологии ПАВ, обладает стеклянной плитой, по которой пропускают от источников к приёмникам колебаний поверхностно-акустические волны с частотой в несколько мегагерц. Источники и приёмники ПАВ – это пьезоэлектрические преобразователи, выполняемые обычно в виде плёнок сульфида кадмия, установленные по краям экрана. Излучённые поверхностно-акустические волны достигают противоположной стороны экрана и отражаются обратно, где попадают на датчики. Если осуществить прикосновение к экрану, то поверхностно-акустические волны будут частично поглощены и преломлены, что зарегистрируют датчики. Полученную информацию сравнивают с заранее записанной информацией о всевозможных распространениях волн и на этой основе формируют сигнал не только о положении точки касания в пространстве, но и силы, с которой оно было произведено. Достоинства: наработка на отказ сенсорного экрана на основе ПАВ обычно в несколько раз превышает наработку на отказ экрана по резистивной технологии. Недостатки: высокая стоимость, низкая разрешающая способность, ограниченная стоимостью изделия, чувствительность к механическим колебаниям, получение ошибочной информации при воздействии вибраций.

10.8. Голографические системы

Голографической называют систему, в которой представление определённой оптической информации обеспечено интерференцией двух волн: отражённой от объекта и когерентной с ней волны. Источником когерентного излучения служит специальный лазер. Волну, которая отражена от объекта, называют объектной или предметной, а когерентную волну называют опорной. При наложении объектной и опорной волн на определённых участках происходит пространственное сложение их амплитуд с учётом фаз. В этих участках пространства интенсивности амплитуд, которые имеют световые волны, могут лежать в диапазоне от их взаимной разности до их взаимной суммы. Все участки пространства, на которых появляются интерференции, образуют интерференционную картину. Если в месте образования интерференционной картины поместить плоскую фотопластинку, то изображение, возникающее на этой пластинке, называют голограммой.

Голограммы позволяют полностью воссоздать изображение исходного объекта, так как содержат информацию и об амплитудах, и о фазах волн; в том числе они могут дать изображение обратной стороны наблюдаемого объекта.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *