для чего служит всережимный регулятор

Устройство современного двигателя

Регулятор частоты вращения коленчатого вала

для чего служит всережимный регулятор

Коленчатые валы двигателя изготовляются штамповкой из средне углеродистых легированных сталей и литьем

из модифицированного магнием чугуна.

Регулятор частоты вращения коленчатого вала изменяет подачу топлива в зависимости от нагрузки двигателя, поддерживая заданную водителем частоту вращения коленчатого вала. Регулятор называется все режимным, так как он может поддерживать любую заданную водителем частоту вращения коленчатого вала и ограничивать максимальную. Ограничение максимальной частоты вращения коленчатого вала вызвано необходимостью предохранить детали дизеля от быстрого изнашивания и чрезмерных нагрузок, а ограничение малой частоты вращения — ухудшением подачи топлива и смесеобразования. Регулятор крепится к задней части корпуса ТНВД и приводится во вращение от кулачкового вала ТНВД через ускоряющие зубчатые колеса, поэтому вал регулятора вращается с большей частотой вращения, чем кулачковый вал. Это позволяет повысить чувствительность регулятора к изменению нагрузки.

Регулятор частоты вращения состоит из:

корпуса с крышкой, смотрового люка, зубчатого колеса привода, вала регулятора с ведомым зубчатым колесом и державкой грузов (ролики грузов упираются в подвижную муфту с шарикоподшипником и пятой), рычага управления рейкой топливного насоса, который крепится на одной оси с пятой (рычаг тягой соединен одним концом с рейкой, а другим концом посредством пальца с кулисой). Скоба управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управления регулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала.
При неработающем двигателе скоба управления кулисой находится в положении «Стоп». После пуска двигателя грузы под действием центробежных сил расходятся и перемещают подвижную муфту от себя. Силовой и двуплечий рычаги поворачиваются против часовой стрелки, преодолевая усилие силовой пружины, одновременно рычаг управления рейкой перемещает рейку в сторону уменьшения подачи топлива. Перемещение рычажной системы продолжается до тех пор, пока центробежные силы грузов не уравновесятся силовой пружиной регулятора.
Необходимую частоту вращения коленчатого вала устанавливает водитель, нажимая на педаль подачи топлива. Установившаяся частота вращения коленчатого вала автоматически поддерживается регулятором следующим образом. При уменьшении нагрузки на двигатель частота вращения коленчатого вала возрастает, так как в цилиндры поступает то же количество топлива. Управления кулисой может занимать два положения: «Работа» и «Стоп». В состав регулятора также входят силовой и двуплечий рычаги управления регулятором, болты ограничения максимальной и минимальной частоты вращения коленчатого вала.

для чего служит всережимный регулятор

Всережимный регулятор частоты вращения коленчатого вала дизеля ЯМЗ-236М;

а — устройство; б — схема работы (увеличение частоты вращения коленчатого вала);1 и 3 — зубчатые колеса; 2 — кулачковый вал топливного насоса; 4 — вал регулятора; 5 — стакан; 6 — ось грузов; 7 — державка; 8 — вал рычагов; 9 — рычаг пружины; 10 — рейка топливного насоса; 11 — тяга; 12 — стартовая пружина рычага рейки; 13 — болт ограничителя максимальной частоты вращения коленчатого вала; 14 — рычаг управления регулятором; 15 — болт регулировки минимальной частоты вращения коленчатого вала на режиме холостого хода; 16 — крышка смотрового люка; 17 — ось двуплечего рычага; 18 — двуплечий рычаг; 19 — пружина регулятора; 20, 22 и 29 — регулировочные винты; 21 — регулировочный болт; 23 — упорная пружина; 24 — серьга; 25 — корректор; 26 — рычаг; 27— рычаг управления рейкой; 28 — скоба; 30 — палец; 31 — кулиса; 32 — пята; 33 — пробка отверстия для слива масла из регулятора; 34 — подвижная муфта; 35 — груз; 36 — резиновые сухари; / — скоба кулисы в положении
«Работа»;11 — скоба кулисы в положении «Стоп».

для чего служит всережимный регулятор

Подвижные детали КШМ

При неработающем двигателе скоба управления кулисой находится в положении «Стоп». После пуска двигателя грузы под действием центробежных сил расходятся и перемещают подвижную муфту от себя. Силовой и двуплечий рычаги поворачиваются против часовой стрелки, преодолевая усилие силовой пружины, одновременно рычаг управления рейкой перемещает рейку в сторону уменьшения подачи топлива. Перемещение рычажной системы продолжается до тех пор, пока центробежные силы грузов не уравновесятся силовой пружиной регулятора.
Необходимую частоту вращения коленчатого вала устанавливает водитель, нажимая на педаль подачи топлива. Установившаяся частота вращения коленчатого вала автоматически поддерживается регулятором следующим образом. При уменьшении нагрузки на двигатель частота вращения коленчатого вала возрастает, так как в цилиндры поступает то же количество топлива. Грузы регулятора, расходясь на некоторый угол, перемещают рычажную систему в сторону, соответствующую уменьшению подачи топлива и восстанавливают величину частоты вращения коленчатого вала до ±30 мин»1
При увеличении нагрузки на двигатель частота вращения коленчатого вала снижается. Центробежные силы грузов уменьшаются, грузы сходятся, рычажная система под действием силовой пружины регулятора перемещает рейку топливного насоса в сторону увеличения подачи топлива до восстановления заданного скоростного режима (перемещению рейки в сторону увеличения подачи топлива также способствует и стартовая пружина рычага рейки).

Источник

Назначение, конструкция и принцип действия регулятора частоты вращения коленчатого вала.

для чего служит всережимный регулятор для чего служит всережимный регулятор для чего служит всережимный регулятор для чего служит всережимный регулятор

для чего служит всережимный регулятор

для чего служит всережимный регулятор

Регуляторы частоты вращения. Для поддержания заданной частоты вращения коленчатого вала необходимо изменять подачу топлива соответственно изменению нагрузки. При возрастании нагрузки частота вращения уменьшается и подачу топлива для поддержания заданной частоты вращения следует увеличить, иначе двигатель может остановиться. При понижении нагрузки частота вращения увеличивается и подачу топлива надо уменьшить, иначе значительно повысится частота вращения и двигатель пойдёт «вразнос». Для автоматизированного изменения подачи топлива в соответствии с изменением нагрузки на двигателях устанавливают регуляторы частоты вращения. Автоматическое регулирование подачи топлива в цилиндры двигателя производится центробежным регулятором, который воздействует на рейки топливных насосов. Воздействие может быть непосредственным (регуляторы прямого действия) и с помощью вспомогательного механизма (регуляторы непрямого действия). Вспомогательным исполнительным механизмом, усиливающим действие регулятора, является сервомотор, обычно гидравлического типа.

Регуляторы прямого действия применяют во всех дизелях мощности и частично средней мощности. Они просты в изготовлении и обеспечивают регулирование подачи топлива в цилиндры двигателя. В настоящее время для дизелей большой мощности используют исключительно регуляторы непрямого действия, которые также широко применяют на дизелях средней мощности. Они обладают лучшими характеристиками, универсальны и более удобны для комплектования дополнительными автоматическими устройствами, необходимыми для организации системы автоматизированного управления. По назначению и предъявляемым техническим требованиям регуляторы частоты вращения подразделяют на однорежимные, двухрежимные и всережимные. Однорежимные регуляторы служат для поддержания заданной частоты вращения коленчатого вала двигателя при любом изменении нагрузки и применяются в основном в двигателях, работающих при постоянной частоте вращения коленчатого вала. Двухрежимные регуляторы предназначены для поддержания постоянной максимальной и минимальной частоты вращения коленчатого вала; на промежуточных скоростных режимах управление частотой вращения осуществляется вручную через топливный насос. Всережимные регуляторы служат для поддержания заданной частоты вращения коленчатого вала двигателя при любом изменении нагрузки и применяются на двигателях, работающих в широком диапазоне частот. По принципу действия чувствительного элемента различают механические, гидравлические, пневматические и электрические регуляторы. В дизельных двигателях чаще всего применяют механические регуляторы с чувствительным элементом центробежного типа. Двигатели малой мощности, работающие с постоянной частотой вращения вала, зачастую оснащают однорежимным механическим регулятором, изменяющим подачу топлива в цилиндры. Валик 1механического регулятора соединён передачей с коленчатым валом дизеля. Вместе с валиком вращаются корпус 3 регулятора и грузы 5, подвешенные на осях 2. Положение грузов фиксируется пружиной 9, нажимающей на муфту 7 и противодействующей центробежной силе. При увеличении внешней нагрузки уменьшается частота вращения вала, и центробежная сила грузов оказывается недостаточной для преодоления усилия пружины. В таком случае положение сближающихся грузов фиксируется упорами 6. При этом тяга 8, связанная с рейкой топливных насосов, находится в положении, обеспечивающем наибольший рабочий ход плунжеров топливных насосов, т.е. наибольшую подачу топлива. При уменьшении нагрузки возникает избыточная мощность двигателя, способствующая повышению частоты вращения валика. Расходящиеся под действием центробежной силы грузы 5 поднимают муфту 7, вследствие чего тяга 8 будет передвигаться в сторону уменьшения рабочего хода плунжеров топливных насосов. Подача топлива в цилиндры уменьшается, соответственно снижается мощность двигателя, и частота вращения становится номинальной. Если грузы достигнут упоров 4 и 11, тяга 8 займёт положение, соответствующее нулевому рабочему ходу плунжера, т.е. подача топлива прекратится. Каждой частоте вращения соответствуют определённое промежуточное положение грузов и величина хода плунжера. Винт (синхронизатор) 10 регулирует силу нажатия пружины, т.е. позволяет изменять задаваемую частоту вращения вала дизеля. Чувствительный элемент регулятора непосредственно соединён системой тяг и рычагов с органом управления подачей топлива (с рейкой топливного насоса и т.п.), регулятор называется регулятором прямого действия. В этом случае работа, необходимая для перестановки органов управления, совершается за счёт изменения энергии чувствительного элемента. Однорежимные регуляторы частоты вращения устанавливают на дизелях мощностью до 50 кВт. Многорежимные регуляторы обеспечивают работу двигателей с несколькими строго фиксированными частотами вращения, например, тепловозных дизелей. Регуляторы непрямого действия делятся на регуляторы с жёсткой обратной связью и изодромные, т.е. с гибкой обратной связью, которая обеспечивает постоянную частоту вращения на всех нагрузках. У дизелей также предусматривают установку регуляторов безопасности или предельных выключателей, прекращающих подачу топлива в цилиндры при увеличении частоты вращения на 10-25% более номинальной.

для чего служит всережимный регулятор

для чего служит всережимный регулятор

Cхема однорежимного механического регулятора: 1-валик, 2-ось, 3- корпус регулятора, 4,6,11-упоры, 5-груз, 7-муфта, 8-тяга, 9-пружина, 10-винт.

Всережимный механический центробежный регулятор прямого действия дизеля, поддерживающий любой заданный частотный режим.

для чего служит всережимный регулятор

Всережимный механический центробежный регулятор прямого действия дизеля, поддерживающей любой заданный частотный режим. Основной его частью является чувствительный элемент, непосредственно реагирующий на изменение частоты вращения и состоящий из группы деталей (грузы, пружины), смонтированных на кулачковом валике топливного насоса в корпусе регулятора. Грузами 10 являются шесть стальных шаров, расположенных в радиальных пазах крестовины 11, насаженной на конец кулачкового валика насоса. Крестовина с шарами помещена между неподвижной в осевом направлении конической тарелкой 9 и подвижной плоской тарелкой 12, перемещающейся по цилиндрическому выступу крестовины и вращающейся во время работы топливного насоса. Рейка 2, связанная с плунжерами насоса, устанавливает их на определённую подачу топлива. При этом две пружины 5 и 7 стремятся через переводной рычаг 6 и тягу 1 вдвинуть рейку в насос и увеличить подачу топлива. Эти же грузы, расходясь под действием центробежной силы, вызывают осевое перемещение плоской тарелки и вместе с ней муфты 13 и через тот же рычаг 6 и тягу 1 стремятся уменьшить подачу топлива, вытягивая рейку из насоса.

При уменьшении нагрузки частота вращения коленчатого вала в первый момент возрастает. Центробежная сила шаров при этом увеличивается, и они, перемещая всю систему и рейку влево, поворачивают плунжеры в сторону уменьшения подачи топлива до положения, при котором мощность, развиваемая двигателем, равна внешней нагрузке. При увеличении нагрузки частота вращения понижается и происходит обратное явление: усилие пружин превосходит снижающуюся центробежную силу шаров и проворачивает вправо рычаг 6 вокруг его оси, перемещая рейку 2 вправо, в сторону увеличения подачи топлива. Когда момент сопротивления на коленчатом валу дизеля равен крутящему моменту, развиваемому двигателем, в регуляторе устанавливается равновесие между центробежной силой шаров и натяжением пружин регулятора, соответствующее определённой частоте вращения. Повышения частоты вращения при данной нагрузке достигает поворотом рычага 4 вправо. При этом увеличивается затяжка пружин регулятора, и равновесие между силой пружин 5, 7 и центробежной силой грузов 10 устанавливается при большей частоте вращения. При переходе на меньщую частоту вращения рычаг 4 передвигают влево, уменьшая тем самым натяжение пружин. В период пуска и прогрева во избежание повышенного износа деталей двигателя необходимо поддерживать малую частоту вращения. Поддержание регулятором малой частоты вращения холостого хода осуществляется пружиной 7 с меньшей свободной длиной.

При частоте вращения коленчатого вала дизеля 500-900 об/мин натянута только эта пружина. Пружина 5 с большей свободной длиной включается в работу при частоте вращения коленчатого вала более 900 об/мин. Она натягивается при значительном повороте вправо рычага 4, когда будет выбран зазор в специально удлинённых пазах пружины. Следовательно, при натянутых обеих пружинах, коленчатый вал дизеля развивает частоту вращения более 900 об/мин. При дальнейшем их натяжении можно получить ещё большую частоту вращения двигателя, вплоть до максимальной. При этом ось рычага 4 упрётся в винт максимальной частоты вращения, расположенный на внешней стороне корпуса регулятора. Данное положение рычага отрегулировано таким образом, что он ограничивает максимальную частоту вращения при номинальной мощности на уровне 1500 об/мин. Если при установке рычага на номинальную мощность при номинальной частоте вращения 1500 об/мин полностью разгрузить двигатель, частота вращения начнёт повышаться, а регулятор автоматически ( в результате воздействия на рейку насоса) начнёт снижать подачу топлива, пока не наступит равновесие между усилием обеих пружин и центробежной силой грузов, которое наступает при 1650 об/мин. Развить большую частоту вращения благодаря регулятору двигатель не может, т.е. регулятор предохраняет от «разноса» при снятии нагрузки.

Регулирование частоты вращения дизелей. В эксплуатации мощность двигателя изменяется от мощности холостого хода до номинальной. Для получения мощности меньше номинальной снижают частоту вращения ( не изменяя подачу топлива) или уменьшают количество сжигаемого топлива, не изменяя частоты вращения. Возможно также одновременное снижение частоты вращения и подачи топлива. При этом меняются все показатели работы двигателя. При равенстве мощности двигателя и потребителя параметры двигателя остаются постоянными, и такой режим работы называется установившимся. При изменении мощности потребителя и мощности двигателя параметры работы меняются. Переходным режимом называют переход двигателя на другое значение мощности, по окончании которого наступает новый установившийся режим работы дизеля. Регулировать мощность двигателя на заданном скоростном режиме можно вручную или регулятором частоты вращения. При отклонении частоты вращения коленчатого вала от заданной регулятор передвигает регулирующий орган топливного насоса и соответственно увеличивает или уменьшает подачу топлива. Изменение частоты вращения воспринимается чувствительным элементом или измерителем скорости. По принципу действия чувствительного элемента различают механические, гидравлические, пневматические и электрические регуляторы. Закономерности, определяющие изменение мощности и вращающего момента дизеля в зависимости от частоты вращения вала или от положения рейки топливного насоса, являющейся регулирующим органом, называют характеристиками двигателя. Под внешней характеристикойпредельной мощности понимают зависимость максимально достижимых мощностей двигателя и соответствующих им расходов топлива от частоты вращения. Нагрузочная характеристика двигателя устанавливает зависимость показателей его работы от нагрузки, что характерно для дизель-генераторов рефрижераторного парка. Винтовая характеристика ограничена максимальной мощностью при номинальной частоте вращения и минимальной мощностью при минимально устойчивой частоте вращения.

Источник

для чего служит всережимный регулятор

Однорежимный регулятор двигателя 6 ДР 30/50 (рис. 139)—прямого действия — состоит из двух грузов 2, шарнирно закрепленных с помощью шарниров 3 на шестерне 1 распределительного вала и стянутых пружиной 5. Внутренние плечи грузов через штыри 4 воздействуют на муфту 15 и через упорный шарикоподшипник 14—на обойму 13. С другой стороны, обойма испытывает усилие сжатой пружины 12. Через рычаг 9 перемещение обоймы передается на пружинную связь 8. Тяга 6 топливных насосов связана через ролик с сектором рукоятки поста управления (на рис. 139 не показано).

При вращении за счет центробежной силы грузы расходятся и, преодолевая силу упругости пружины 12, перемещают обойму 13 вправо. Если частота вращения двигателя ниже предельной, то благодаря зазору h между внутренним торцом пружинной связи 8 и упором тяги 7 регулятор не оказывает влияния на положение тяги 6 топливных насосов. Когда частота вращения достигнет предельной, зазор h будет выбран и регулятор начнет воздействовать на топливную тягу, перемещая ее влево в направлении уменьшения подачи топлива.

Предельную частоту вращения, ограничиваемую регулятором, можно изменять величиной затяга пружины 12, что достигается поворотом маховика 11, перемещающего шпиндель 10.

для чего служит всережимный регулятор

Всережимный регулятор двигателя 6Ч24/36 (рис. 140) — прямого действия. В корпусе 12 в подшипниках вращается вертикальный вал 1, приводимый в движение через передаточные шестерни 20 и 2 от распределительного вала. Два груза 18 закреплены в крестовине на осях 19 и внутренними плечами, при помощи упоров 5, нажимают на втулку 4, свободно перемещающуюся вдоль вертикального вала 1. Перемещение втулки 4 через радиально-упорный подшипник 17 передается на муфту 5. С противоположной стороны муфта воспринимает усилие пружин 6, верхние концы которых упираются в тарелку 14. Закрепленный на муфте 5 направляющий стакан 16 через вилку и валик связан с рычагом 15, конец которого воздействует на тягу топливных насосов.

При возрастании частоты вращения грузы через втулку 4 и муфту 5 действуют на пружины 6, сжимая их. Направляющий стакан 16 поднимается и через рычаг 15 перемещает топливную тягу в направлении уменьшения подачи топлива. При повышении нагрузки, и, следовательно, понижении частоты вращения сила упругости пружин преодолевает центробежную силу грузов, направляющий стакан 16 опускается и рычаг 15 воздействует на рейку топливных насосов, увеличивая подачу топлива.

Частота вращения, которую регулятор должен поддерживать, задается изменением затяга пружин 6. Это достигается поворотом маховика 11 и с ним шестерни 13, которая поворачивает шестерню 7 с удлиненной втулкой. Шестерня 7 зафиксирована в корпусе и осевого перемещения не имеет. Расположенный внутри нее на резьбе шпиндель 10 при вращении шестерни 7 получает осевое перемещение, что изменяет затяг пружин 6.

Максимальная частота вращения, на которую можно настроить регулятор, ограничивается закрепленным на шпинделе установочным кольцом 9, минимальная частота вращения—регулировочным болтом 8.

Всережимно-предельный регулятор двигателя 7ДКРН 70/120 (рис. 141) — непрямого действия — приводится в движение через шестерню 6 вала топливных насосов. Шестерня 6 соединена со ступицей 5 регулятора через эластичную муфту 4. На ступице расположены грузы 7, внутренние плечи которых соединены с чекой 1 шпинделя 2. Под действием центробежных сил грузы 7 через чеку 1, шпиндель 2 и упорный шарикоподшипник 3 могут передвигать поршень 18 вправо. Давление на поршень уравновешивается пружинами, натяжение которых регулируется маховиком 17. При своем движении поршень 18 через ушко 16 и двуплечий угловой рычаг перемещает золотник 15, имеющий две отсечные кромки 11 и 12 (на рисунке поле золотника зачернено). Золотник 15 плотно входит в центральное отверстие поршня сервомотора 13 с удлиненной ступицей, который имеет окна, перекрывающиеся кромками 11 и 12 золотника. Через маслоподводящую трубу 14, кольцевой канал а и отверстия в ступице поршня 13 масло подводится под нижнюю отсечную кромку 12 золотника 15.

для чего служит всережимный регулятор

При возрастании частоты вращения двигателя центробежная сила грузов преодолевает силу упругости пружины и поршень 18, перемещаясь вправо, поднимает золотник 15. Через образующуюся щель между нижней кромкой 12 золотника и нижними кромками окон поршня 13 масло поступает в полость «в» и перемещает поршень 13 вверх. Масло из пространства над поршнем сливается по трубе 8. Поршень остановится, когда нижние кромки его окон совпадут с нижней кромкой 12 золотника, и поступление масла в полость «в» прекратится. При снижении частоты вращения золотник перемещается вниз, открывая щель между своей верхней кромкой 11 и верхними кромками окон поршня. Масло из полости «в» перетекает в пространство над поршнем, и он опускается. Движение поршня вниз прекратится, когда верхние кромки его окон совпадут с верхними кромками золотника. Таким образом, перемещение поршня сервомотора равно величине перемещения золотника, или, как говорят, поршень «следит» за золотником.

При своем движении вверх (в случае возрастания частоты вращения) поршень сервомотора 13 через толкатель 9 может воздействовать на ролик 19, сидящий на пальце 10 рычага 20, и поворачивать его по часовой стрелке. Это приведет к перемещению тяги 21 вниз и через поворотный валик и систему рычагов (на рисунке не показаны) — к уменьшению подачи топлива.

При нормальных условиях эксплуатации регулятор действует как предельный и управление подачей топлива производится маховиком, с поста управления. Если частота вращения меньше предельной, то между толкателем 9 и роликом 19 имеется зазор. По мере увеличения частоты вращения двигателя этот зазор уменьшается, и при достижении предельной частоты вращения толкатель упрется в ролик. Дальнейшее увеличение частоты вращения происходить не будет, так как поршень 13, поднимаясь вверх, станет опускать через рычаг 20 тягу 21 в сторону нулевой подачи.

При плавании судна на волнении регулятор включают по схеме всережимного. Для этого сначала уменьшают маховиком с поста управления количество подаваемого топлива и устанавливают между толкателем 9 и роликом 19 специальную проставку. Затем на посту управления увеличивают подачу топлива до номинального значения (по нагрузке) и несколько ослабляют маховиком 17 затяг пружин регулятора. Этим устанавливается пониженная частота вращения двигателя, которая поддерживается регулятором при плавании судна в штормовых условиях.

для чего служит всережимный регулятор

Всережимный регулятор с ограничением по нагрузке и по задаваемым и фактическим оборотам Р13М-2КЕ (рис. 142) — непрямого действия разработан Центральным научно-исследовательским дизельным институтом (ЦНИДИ) и применяется в судовых установках с главными дизелями типа ДР 43/61-1 и ДР 30/50-3. Этот регулятор отвечает- всем требованиям, предъявляемым к регуляторам, используемым в системах дистанционного автоматизированного управления двигателями.

Основные узлы регулятора

Привод регулятора осуществляется посредством приводного валика 1, который передает вращение через шестеренную пару 2, упругую муфту 5 и верхнюю шестеренную пару чашке измерителя 6. Упругая муфта 5 служит для гашения резких колебаний частоты вращения, благодаря чему второй зубчатой шестерне верхней пары, выполненной заодно с чашкой 6, они не передаются.

Измерительное устройство представляет собой два груза 7, шарнирно закрепленных в чашке 6. Внутренние плечи грузов через упорную тарелку и упорный шарикоподшипник воздействуют на нижнюю тарелку пружины измерителя 8. Нижняя тарелка пружины соединена со шпинделем, проходящим свободно через сухарь 18. На верхнем конце шпинделя закреплена упорная тарелка 34, с помощью которой действует механизм ограничения нагрузки. К упорному шарикоподшипнику присоединен золотник 9 с двумя рабочими полями, проходящий через отверстие в ступице чашки 6.

Задающее устройство — пружина 8. При задании нового режима изменение затяга пружины осуществляется поворотом валика управления 24 через каретку 23 и сухарь 18.

Источник вспомогательной энергии — масляный насос, состоящий из шестеренной пары 2 и двух всасывающих и двух нагнетательных шариковых клапанов 3. Наличие двух пар клапанов обеспечивает работу регулятора при реверсе двигателя. Масло засасывается из ванны и подается по каналам в полость над поршнем сервомотора 10 к верхнему полю золотника 9 и в два аккумулятора 4 (на рисунке показан один). Каждый аккумулятор представляет собой цилиндр с подпружиненным поршнем, который при повышении давления масла выше 8 бар открывает сливное отверстие «а».

Гидравлический сервомотор состоит из цилиндра с поршнем 10, перемещение которого управляется золотником 9. (вверху на кольцевую площадь поршня непрерывно воздействует давление масла. При подъеме золотника 9 масло от насоса направляется под поршень 10 и поднимает его. При опускании золотника масло из-под поршня сливается в ванну, и за счет давления масла на верхнюю кольцевую площадь поршень опускается. Перемещение поршня 10 через продольный вал 11, пару конических полушестерен и поперечный вал 12 передается тяге 13, управляющей топливными насосами.

Жесткая обратная связь состоит из рычага на продольном валу 11, шатуна 15, ролика с валиком 16 и вильчатого рычага 17, который связан с сухарем 18, воздействующим на затяг пружины 8. Положение профильной части шатуна 15, соприкасающейся с роликом, можно изменять, чем достигается необходимая степень неравномерности (статическая ошибка) — от 0 до 6%. Регулируется степень неравномерности винтом с указателем 35, который при повороте червячной шестерни разворачивает эксцентрично сидящий на ее ступице правый конец шатуна 15. В результате этого под ролик подводится другой участок профиля шатуна.

Гибкая обратная связь состоит из цилиндра с поршнем изодрома 20, иглы 21, корректора 22 и масляной полости, образуемой каналами между поршнем 20, корректором 22 и золотником 9. Поршень 20 при помощи подпоршневой пружины постоянно прижат к пальцу 19 продольного вала 11. Игольчатым клапаном 21 регулируется время изодрома. В случае значительного возрастания давления (или разрежения) в полости изодрома корректор 22 сообщает ее с масляной ванной.

Механизм, ограничения нагрузки состоит из: углового рычага с плечами 32 и 33, толкателя 31, шестерен 28, 29, 30 и находящихся с ними в зацеплении секторов с указателями 25, 26, 27, а также сектора 14.

Каждое положение сектора 14, насаженного на продольный вал 11, соответствует определенной подаче топлива. Одновременно с изменением регулятором подачи топлива через сектор 14 поворачивается шестерня с указателем нагрузки 25. Эта шестерня посредством закрепленного на ней зубчатого сектора разворачивает шестерню 30, в ступицу которой упирается кольцевой бурт толкателя 31. Положение шестерни 30 всегда соответствует количеству подаваемого насосами топлива.

При изменении скоростного режима валиком 24 поворачивается каретка 23. Закрепленный на ней зубчатый сектор через валик с шестернями поворачивает вертикальный сектор с указателем 26. Одновременно через другой зубчатый сектор поворачивается шестерня 29, положение которой соответствует подаче топлива, допускаемой для данного скоростного режима. Стрелка указателя 26 показывает величину этой подачи.

Максимальная нагрузка, выше которой при любом скоростном режиме работа дизеля не допускается, задается определенным положением шестерни 28. Величину этой нагрузки показывает указатель 27, который закреплен на секторе, находящемся в зацеплении с шестерней 28.

Шестерня 29 свободно насажена на ступицу шестерни 28. У обоих этих шестерен на торцах, обращенных к шестерне 30, имеются выступы. Подобный выступ имеется на торце шестерни 30.

Работа регулятора при увеличении частоты вращения происходит следующим образом.

Грузы 7, преодолевая силу упругости пружины 8, поднимают золотник 9. Масло от насоса поступает в полость под поршнем сервомотора 10 и перемещает его вверх, за счет чего тяга 13 передвигается в направлении уменьшения подачи топлива. Одновременно поднимается поршень изодрома 20. В полости под этим поршнем, а значит и под золотником 9, создается разрежение, препятствующее перемещению золотника вверх. Этому может способствовать также и жесткая обратная связь (при степени неравномерности более 0%), которая через рычаг 17 несколько увеличивает затяг пружины 8. По истечении не которого времени (время изодрома) за счет перетекания масла через игольчатый клапан 21 давление в полости изодрома сравняется с атмосферным, и гибкая связь перестанет воздействовать на золотник 9.

В случае понижения частоты вращения регулятор будет действовать в обратном направлении, увеличивая подачу топлива. Если при этом нагрузка возрастет до значения, заданного механизмом ограничения, то шестерня 30, упираясь своим выступом в выступ соответствующей шестерни (28 или 29), начнет перемещаться вдоль своей оси влево и передвигать толкатель 31. Толкатель 31 через рычаг 32 и вильчатый рычаг 33 поднимет упорную тарелку 34. Это позволит грузам 7 поднять золотник 9 и направить масло под поршень сервомотора 10, который, перемещаясь вверх, будет передвигать тягу 13 в направлении уменьшения подачи топлива.

Источник


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *