днк в биологии что это
ДНК: история одной макромолекулы
25 апреля – День ДНК!
Открытие ДНК произошло в 1869 году швейцарским биохимиком Фридрихом Мишером, но потребовалось более 80 лет, чтобы важность этого открытия была полностью осознана. И даже сегодня, по прошествии более 150 лет, новые исследования и технологии продолжают предлагать более глубокое понимание вопроса: почему важна ДНК?
Наследственный материал человека, известный как дезоксирибонуклеиновая кислота, или ДНК, представляет собой длинную молекулу, содержащую информацию, необходимую организму для развития и размножения. ДНК находится в каждой клетке тела и передается от родителя к ребенку.
ДНК является самовоспроизводящимся материалом, который есть в каждом живом организме. Проще говоря, это носитель всей генетической информации. Он содержит своеобразные инструкции, необходимые организму для развития, роста, размножения. Это одна длинная молекула, которая содержит наш генетический «код». Этот «код» является отправной точкой для нашего развития, но влияние внешних факторов, таких как наш образ жизни, окружающая среда и питание, в конечном итоге формируют человека.
Из чего состоит ДНК?
ДНК человека уникальна тем, что состоит из почти 3 миллиардов пар оснований, и около 99 процентов из них одинаковы для каждого человека. Тем не менее, именно последовательность этих оснований определяет, каким будет этот организм.
Подумайте о ДНК как об отдельных буквах алфавита — буквы объединяются друг с другом в определенном порядке, образуя слова, предложения и истории. Та же самая идея верна для ДНК: то, как азотистые основания упорядочены в последовательностях ДНК, формирует гены, которые «говорят» вашим клеткам, как производить белки. Рибонуклеиновая кислота (РНК), другой тип нуклеиновой кислоты, образуется в процессе транскрипции (при репликации ДНК). Функция РНК заключается в том, чтобы транслировать генетическую информацию из ДНК в белки, когда она декодируется рибосомой.
ДНК содержит жизненно важную информацию, которая передается из поколения в поколение. Молекулы ДНК в ядре клетки плотно обвиваются, образуя хромосомы, которые помогают хранить важную информацию в виде генов.
ДНК работает путем копирования себя в эту одноцепочечную молекулу под названием РНК. РНК похожа на ДНК, но она содержит некоторые существенные молекулярные различия, которые выделяют ее. РНК действует как посланник, передавая жизненно важную генетическую информацию в клетке от ДНК через рибосомы для создания белков, которые затем образуют все живое.
Как была обнаружена ДНК?
Кто открыл ДНК?
Полный ответ на вопрос, кто открыл ДНК, сложен, потому что, по правде говоря, многие люди внесли свой вклад в то, что мы знаем об этом сейчас.
1866 — Грегор Мендель, известный как «Отец генетики», был фактически первым, кто предположил, что характеристики передаются из поколения в поколение. Мендель обосновал термины, которые мы все знаем сегодня: рецессивные и доминирующие признаки.
1869 — Фридрих Мишер идентифицировал «нуклеин», выделив молекулу из ядра клетки, которая впоследствии стала известна как ДНК.
1881 — лауреат Нобелевской премии немецкий биохимик Альбрехт Коссель, которому приписывают наименование ДНК, идентифицировал нуклеин как нуклеиновую кислоту. Он также выделил те пять азотистых оснований, которые в настоящее время считаются основными строительными блоками ДНК и РНК: аденин (A), цитозин ©, гуанин (G) и тимин (T) (который заменяется урацилом (U). ) в РНК).
1882 — Вскоре после открытия Косселя Вальтер Флемминг обнаружил митоз в 1882 году, став первым биологом, который выполнил полностью систематическое исследование деления хромосом. Его наблюдения, что хромосомы удваиваются, важны для позже обнаруженной теории наследования.
Начало 1900-х годов — Теодор Бовери и Уолтер Саттон независимо работали над тем, что сейчас известно как теория хромосом Бовери-Саттона или хромосомная теория наследования. Их выводы являются основополагающими в нашем понимании того, как хромосомы переносят генетический материал и передают его из поколения в поколение.
1944 — Освальд Эвери обосновал, что ДНК, а не белки, трансформируют свойства клеток.
1944 — 1950 — Эрвин Чаргафф обнаружил, что ДНК отвечает за наследственность. Его открытия, известные как «Правила Чаргаффа», доказали, что единицы гуанина и цитозина, а также единицы аденина и тимина одинаковы в двухцепочечной ДНК, и он также обнаружил, что ДНК различается у разных видов.
1951 — работа Розалинд Франклин доказала спиральную форму ДНК, что было подтверждено Уотсоном и Криком почти два года спустя. Ее выводы были признаны только посмертно.
25 апреля 1953 — Уотсон и Крик, опираясь на достижения Чаргаффа и Франклин, опубликовали структуру двойной спирали ДНК. Этот день во всем мире отмечается как день ДНК.
Из чего состоит ДНК человека
Дезоксирибонуклеиновая кислота, или ДНК, – это своеобразный программный код, который определяет то, каким образом будет развиваться, функционировать и размножаться организм. Именно эта молекула – объект генетических исследований, которые с высокой точностью помогают в решении ряда сложных проблем при установлении родства, диагностике наследственных заболеваний.
Структура построения ДНК
Структура ДНК состоит из шести меньших молекул – пятиуглеродного сахара, называемого дезоксирибозой, молекулы фосфата и четырех различных азотистых оснований (аденин, тимин, цитозин и гуанин). Модель структуры ДНК называется двойной спиралью, потому что две ее длинные цепи закручиваются, как витая лестница. Вертикальные элементы этой лестницы изготовлены из чередующихся молекул сахара и фосфата. Ступеньки лестницы состоят из двух оснований, соединенных двумя или тремя слабыми водородными связями.
Основной строительный блок ДНК называется нуклеотид. Нуклеотид состоит из одной молекулы сахара, одной молекулы фосфата и одного из четырех оснований. Пуриновые основания (аденин и гуанин) имеют двойную кольцевую структуру, в то время как пиримидиновые основания (тимин и цитозин) имеют только одно кольцо.
Нуклеотиды ДНК выстраиваются так, что молекулы сахара и фосфата образуют два длинных остова – их можно сравнить с поручнями лестницы. Чтобы сделать ступеньки этой лестницы, два основания соединяются между молекулами сахара на двух поручнях. Молекулы фосфата не имеют между собой никаких «перепонок». Молекула аденина сочетается только с тимином. Цитозин создает пары только с гуанином. Они могут соединяться в любом порядке на ступенях, давая четыре возможных комбинации оснований – A-T или T-A и C-G или G-C.
И именно эта цепочка пар оснований составляет код, управляющий тем, как выглядит любой организм на нашей планете, в том числе человек. Молекула ДНК выполняет ряд важнейших функций, среди которых:
ДНК хранит информацию, необходимую для построения и контроля клетки. Передача этой информации от материнских к дочерним клеткам называется вертикальной передачей генов и происходит в процессе репликации ДНК. ДНК реплицируется, когда клетка делает дубликат копии своей ДНК, только после этого клетка делится, что приводит к правильному распределению одной копии ДНК на каждую полученную клетку. ДНК также может быть ферментативно расщеплена и использована в качестве источника нуклеозидов и нуклеотидов для клетки. В отличие от других макромолекул, ДНК не выполняет структурную роль в клетках.
Весь набор информации, закодированной в ДНК организма называется его геномом. Он содержит информацию обо всех белках, синтезируемых организмом. Это инструкции примерно для 30 тысяч различных белков. Количество данных, которые содержит геном, просто поражает: к примеру, типичная клетка человеческого организма вмещает в себя 2 метра дезоксирибонуклеиновой кислоты. Если записать последовательность нуклеотидов в четырехбуквенном нуклеотидном коде, то это займет четверть страницы текста. А если полностью расшифровать геном человека, это займет тысячи страниц.
Как открыли ДНК?
Гены содержат биологическую информацию, которая должна передаваться без изменений от одного поколения к следующему. Она передается каждый раз, когда происходит деление клетки. Отсюда вытекают два основных биологических вопроса: как можно передать информацию в химической форме и как скопировать ее без изменений? Открытие структуры ДНК стало очередной вехой в биологии двадцатого века, поскольку это предложило ответы на оба вопроса, что позволило решить на молекулярном уровне проблему наследственности.
Существует распространенное заблуждение, что Джеймс Уотсон и Фрэнсис Крик обнаружили ДНК в 1950-х гг. На самом деле ДНК была открыта за десятилетия до них. Следуя работе предшествовавших им пионеров, Джеймс и Фрэнсис смогли прийти к своему новаторскому заключению о том, из чего состоит ДНК, в 1953 году. Но история открытия ДНК начинается в 1800-х годах. Вот несколько интересных фактов из этой истории.
Молекула, теперь известная как ДНК, была впервые идентифицирована в 1860-х годах швейцарским химиком по имени Иоганн Фридрих Мишер. Иоганн решил исследовать ключевые компоненты лейкоцитов – фрагментов иммунной системы нашего организма. Основным источником этих клеток были бинты, собранные в ближайшей медицинской клинике.
Иоганн провел эксперименты с использованием солевых растворов, чтобы лучше понять, из чего состоят лейкоциты. Он заметил, что при добавлении кислоты в раствор клеток от раствора выделяется некое вещество. Это вещество затем снова растворяется при добавлении щелочи. Исследуя это вещество, он понял, что оно обладает неожиданными свойствами, отличными от других белков, с которыми он был знаком. Иоганн назвал эту загадочную субстанцию «нуклеином», потому что считал, что она произошла из клеточного ядра. Затем он приступил к поиску способов извлечь его в чистом виде.
Иоганн был убежден в важности нуклеина и подошел очень близко к раскрытию его роли, хотя ему были доступны только простые инструменты и методы. Он долго колебался, прежде чем опубликовал свои результаты в 1874 году. В результате прошло много десятилетий, прежде чем открытие Иоганна Фридриха Мишера было справедливо оценено научным сообществом.
В течение многих лет ученые продолжали верить, что белки – это молекулы, в которых содержится весь наш генетический материал. Они полагали, что нуклеин не был достаточно сложным, чтобы содержать всю информацию, необходимую для создания генома. Как один тип молекулы мог объяснить все изменения, наблюдаемые в пределах вида?
Альбрехт Коссель был немецким биохимиком, который добился большого прогресса в понимании основных строительных блоков нуклеина. В 1881 году Альбрехт идентифицировал нуклеин как нуклеиновую кислоту и дал ей ее нынешнее химическое название – дезоксирибонуклеиновая кислота (ДНК). Он также выделил пять нуклеотидов основания, которые являются строительными блоками ДНК и РНК: аденин (A), цитозин (C), гуанин (G), тимин (T) и урацил (U). Эта работа была вознаграждена в 1910 году Нобелевской премией по физиологии и медицине.
В начале 1900-х годов снова возрос интерес к работа Грегора Менделя. Новые исследования пытались доказать или опровергнуть его теории о том, как физические характеристики наследуются от одного поколения к другому.
В середине девятнадцатого века анатом Вальтер Флемминг из Германии обнаружил волокнистую структуру в ядре клеток. Он назвал эту структуру «хроматином», но на самом деле он открыл то, что мы теперь называем хромосомами. Наблюдая за этим хроматином, Вальтер обнаружил, что хромосомы отделяются во время клеточного деления, также известного как митоз.
Хромосомная теория наследования была разработана главным образом Уолтером Саттоном и Теодором Бовери. Сначала они представили идею о том, что генетический материал, передаваемый от родителя к ребенку, находится внутри хромосом. Их работа помогла объяснить наследственные паттерны, которые Грегор Мендель наблюдал более века назад.
Интересно, что Уолтер Саттон и Теодор Бовери фактически работали независимо в начале 1900-х годов. Уолтер изучал хромосомы кузнечика, а Теодор изучал эмбрионы круглого червя. Тем не менее, их работы объединилась в идеальный союз вместе с выводами нескольких других ученых, сформировав хромосомную теорию наследования.
Что можно узнать по молекуле ДНК
Состав ДНК человека позволяет проводить сложные генетические исследования. Внутри ДНК закодированы такие разнообразные черты, как цвет глаз и волос человека, его рост, телосложение и многое-многое другое. Хотя ДНК каждого организма уникальна, вся ДНК состоит из одинаковых молекул азота. Так каким же образом ДНК одного организма отличается от другого? Это определяется порядком, в котором расположены эти более мелкие молекулы. В свою очередь, эта схема расположения в конечном итоге определяет уникальные характеристики каждого организма. Благодаря этому генетики могут изучать последовательности ДНК людей, чтобы определить:
Для того, чтобы провести любое из таких исследований, достаточно сдать мазок из полости рта или кровь (для пренатальной диагностики), хотя подходят и любые другие частички тела, если нет возможности получить стандартный мазок. Сроки и стоимость ДНК-анализа зависят от его сложности, типа предоставленных биологических материалов, количества участников исследования.
Изучение ДНК: строение, структура ДНК, функции
Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.
Строение ДНК-молекулы
Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.
ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.
Структура ДНК
Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.
Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.
Синтез ДНК. Репликация
Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.
Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:
В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.
Функции ДНК
Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.
Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.
Антитела к цитоплазме нейтрофилов, NSCA класса IgА
РПГА с сальмонеллёзным диагностикумом (О-антиген )(anti-Salmonella A,B,C1,C2,D,E )
Исследования основных параметров клеточного иммунитета: подсчет лейкоцитов, лимфоцитов, нетрофилов, CD3, CD4, CD8, CD16, CD20, CD56, CD4/CD8, CD19
Расширенное иммунологическое исследование клеточного иммунитета: подсчет лейкоцитов, лимфоцитов, нейрофилов, CD3, CD4, CD8, CD16, CD20, CD38, CD54, CD71, CD95, CD56, CD4/CD8, CD19, CD95
Биологическая роль ДНК и РНК
ДНК – самая важная молекула для всех живых существ, даже растений. Она определяет наследование, кодирования белков и содержит инструкции для развития и размножения всего организма и каждой его клетки в отдельности. Достижения генетики позволили раскрыть информацию, содержащуюся в ДНК, и использовать ее с пользой для людей. Теперь каждый может сделать конфиденциальный ДНК-тест, чтобы получить ответы на самые сложные вопросы. Давайте узнаем больше, как работает и какова биологическая роль ДНК.
Какие функции выполняет ДНК в организме
ДНК несет ответственность за рост и поддержание жизни, что выражается в выполнении этой молекулой трех функций.
Таким образом, на что влияет ДНК в организме? Размеры ее влияния огромны – эта молекула содержит инструкции, необходимые организму для развития, жизни и размножения. Эти инструкции находятся внутри каждой клетки и передаются от обоих родителей их детям.
ДНК помогает синтезу РНК
Матричная РНК, или мРНК, – это одноцепочечная промежуточная молекула, которая переносит генетическую информацию от ДНК в ядре к цитоплазме, где она служит шаблоном в образовании полипептидов. мРНК синтезируется в ядре с использованием нуклеотидной последовательности ДНК в качестве матрицы.
Процесс создания мРНК из ДНК называется транскрипцией и происходит в ядре. мРНК направляет синтез белков, который происходит в цитоплазме. мРНК, образованная в ядре, транспортируется из ядра в цитоплазму, где она присоединяется к рибосомам. Белки собираются на рибосомах с использованием нуклеотидной последовательности мРНК в качестве инструкции. Таким образом, мРНК несет «сообщение» от ядра к цитоплазме. Сообщение закодировано в нуклеотидной последовательности мРНК, которая комплементарна нуклеотидной последовательности ДНК, служившей матрицей для синтеза мРНК. Создание белков из мРНК называется трансляцией. В этом заключается биологическая роль РНК.
Молекулярные болезни и связь молекул ДНК
Молекулярное, или генетическое, заболевание – это любое заболевание, вызванное сбоем на молекулярном уровне, то есть в молекуле ДНК. Генетическая аномалия может варьироваться от незначительной до крупной – от одной мутации в единственном основании в ДНК до грубой хромосомной аномалии, включающей изменение количества или набора хромосом. Мутации могут происходить либо случайно, либо из-за воздействия окружающей среды.
Существует ряд различных типов генетических нарушений обмена, в том числе:
Однако далеко не все мутации в генах – это приговор. Гены могут включаться и выключаться при определенных условиях среды. Поэтому даже имея предрасположенность к тому или иному заболеванию, для предупреждения их развития человек может соблюдать назначенный врачом план питания и тренировок, отказываясь от вредных привычек.
Строение и действие гена РНК
ДНК – дезоксирибонуклеиновая кислота, а РНК – рибонуклеиновая кислота. Хотя и ДНК, и РНК несут генетическую информацию и имеют связь между собой, между ними довольно много различий. Что общего между ДНК и РНК и в чем отличия?
Функции ДНК и РНК в организме разные. ДНК отвечает за хранение и передачу генетической информации, в то время как РНК непосредственно кодирует аминокислоты и выступает в качестве посредника между ДНК и рибосомами для производства белков.
Преимущества проведения анализов в лаборатории Медикал Геномикс Украина
Лаборатория Медикал Геномикс Украина – крупнейшая в стране английская лаборатория генетических исследований. Здесь вы можете пройти любой генетический тест, в том числе для установления родственных отношений, а также медицинские, генеалогические исследования.
Мы работаем быстро и качественно, гарантируя конфиденциальность и высокую точность результата, поскольку используем передовое оборудование, а каждый тест проверяется двумя независимыми группами ученых.
Позвоните нам, если у вас есть вопросы – наши консультанты ответят на них и помогут оформить заказ. Сдать биоматериалы можно в одном из наших 78 пунктов приема образцов по всей Украине или заказав набор для домашнего забора материала.
ДНК (Дезоксирибонуклеиновая кислота)
ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.
Что такое ДНК?
Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).
ДНК большинства организмов – это длинная двухцепочечная полимерная молекула. Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).
Участок молекулы ДНК, кодирующий определенный признак, – ген.
Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки, другие — только молекулы РНК.
Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:
Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.
Строение ДНК
ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:
Рисунок 1 : ДНК – строение одной цепочки нуклеотидов
При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание — к 1′-атому.
Основания в ДНК бывают двух типов:
Рисунок 2: Азотистые основания- пуриновые и пиримидиновые
Строение нуклеотидов в молекуле ДНК
В ДНК моносахарид представлен 2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН), а в РНК — рибозой, имеющей 2 гидроксильные группы (OH).
Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом — 5′-фосфатная группа (5′-конец).
Уровни структуры ДНК
Принято выделять 3 уровня структуры ДНК:
Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.
Вторичная структура ДНК стабилизируется водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек, закрученных вправо вокруг одной оси.
Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.
Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см, а в форме суперспирали укладывается в 5 нм.
Правило Чаргаффа
Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:
Модель ДНК Уотсона-Крика
Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).
Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином, а гуанин — с цитозином. Пара оснований А—Т стабилизируется двумя водородными связями, а пара G—С — тремя.
Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.
Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы», а пары оснований А—Т и G—С — ее ступеньки (рисунок 3).
Рисунок 3: Модель ДНК Уотсона-Крика
Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′. В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:
В такой записи 5′-конец верхней цепи всегда располагают слева, а 3′-конец — справа.
Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.
Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:







