до чего расщепляются белки жиры и углеводы
Энергетический обмен
Обмен веществ
Энергетический обмен
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
Пластический обмен
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Раздельное питание
Содержание
Раздельное питание [ править | править код ]
Сейчас публикуется довольно много статей и книг, не рекомендующих употреблять углеводы и белки в одном приеме пищи. На этом построена, в частности, так называемая система раздельного питания. Она была разработана в начале прошлого века американским доктором Хеем. В основе этой системы лежит разделение всех продуктов на «кислые» и «щелочные», высокобелковые и богатые углеводами. В особую группу выделена «нейтральная» пища, т.е. жиры, кисломолочные продукты, сыры, орехи, ягоды.
Хей советует на завтрак есть щелочную пищу (овощи и фрукты), на обед — белковую, а на ужин — углеводную. Продукты «нейтральной» группы разрешается сочетать с другими. Интервал между основными приемами пищи — минимум 4 ч, однако в промежутках разрешается потреблять овощи или фрукты. Вообще, в системе раздельного питания употребление белков (и особенно мяса) ограничивается.
Согласно заявлениям сторонников данной системы, она способствует нормализации обмена веществ, увеличению или уменьшению веса тела, а также помогает бороться с болезнями. Сам Хей якобы вылечился с ее помощью от гломерулонефрита. Однако для спортсменов раздельное питание вряд ли будет полезным. Следуя подобным советам, можно существенно затормозить рост спортивных результатов. Развивающемуся организму прежде всего необходимо достаточное количество различных белков. Углеводы способствуют «сохранению» белка — он расходуется на построение мышечной ткани, а не как источник энергии. Белок же замедляет всасывание углеводов, снижая тем самым их гликемический индекс. В результате уровень сахара в крови остается более стабильным. Аналогичное взаимодействие наблюдается между жиром и белком.
Физиология [ править | править код ]
Расщепление углеводов в процессе пищеварения [ править | править код ]
Расщепление сложных углеводов пищи начинается в ротовой полости под действием ферментов амилазы и мальтазы слюны. Оптимальная активность этих ферментов проявляется в щелочной среде. Амилаза расщепляет крахмал и гликоген, а мальтаза — мальтозу. При этом образуются более низкомолекулярные углеводы — декстрины, частично — мальтоза и глюкоза.
В желудке расщепление углеводов пищи не происходит, так как отсутствуют специфические ферменты гидролиза углеводов, а кислая среда желудочного сока (рН 1,5—2,5) подавляет активность ферментов слюны. В тонком кишечнике происходит основной распад углеводов пищи. В двенадцатиперстной кишке под действием фермента амилазы сока поджелудочной железы сложные углеводы постепенно расщепляются до дисахаридов. Далее дисахариды под действием высокоспецифических ферментов мальтазы, сахаразы и лактазы расщепляются до моносахаридов, в основном глюкозы, фруктозы, галактозы.
Расщепление жиров в процессе пищеварения [ править | править код ]
Основными факторами, необходимыми для расщепления жира в пищеварительном тракте, являются: наличие ферментов, расщепляющих жиры, и условий для проявления их оптимальной активности (рН); наличие эмульгаторов для перевода жира в мелко раздробленное (эмульгированное) состояние. Такими эмульгаторами являются желчные кислоты (которые образуются в печени из холестерина и поступают в кишечник с желчью).
В ротовой полости необходимые условия отсутствуют, поэтому химическое расщепление жиров не происходит. В желудке имеется липаза с очень низкой активностью. Связано это с тем, что очень кислая среда в желудке (рН 1,5—2,5) подавляет активность липазы (рН 7,8—8,1), а также отсутствуют эмульгаторы. Следовательно, расщепляться могут только уже эмульгированные жиры, которые содержатся в молоке и яичном желтке.
Основной гидролиз нейтральных жиров пищи происходит в тонком кишечнике под воздействием активных липаз. Среда в кишечнике слабощелочная, т. е. оптимальная для проявления активности липазы, поступающей сюда с соком поджелудочной железы.
Расщепление белков в процессе пищеварения [ править | править код ]
Белки пищи в ротовой полости не расщепляются, так как слюна не содержит гидролитических ферментов.
Химическое расщепление белков начинается в желудке под воздействием протеолитических ферментов (пептидгидролаз), которые расщепляют пептидные связи между аминокислотами.
Эти ферменты образуются клетками слизистой оболочки желудка, тонкого кишечника и поджелудочной железы в неактивной форме. Такая форма ферментов предотвращает самопереваривание белков в клетках, где они синтезируются, и стенок желудочно-кишечного тракта (специально для тех, кто все еще бредит мыслями о том, что во время голодания желудок переваривает сам себя).
В желудке переваривание белков происходит при участии фермента желудочного сока пепсина, который образуется из неактивного пепсиногена под воздействием соляной кислоты. Пепсин проявляет максимальную ферментативную активность в сильно кислой среде при рН 1—2. Кроме того, под воздействием соляной кислоты происходит набухание и частичная денатурация белков, что приводит к увеличению поверхности соприкосновения фермента с белками. Все это облегчает процесс расщепления белков в желудке. Пепсин расщепляет пептидные связи белковых молекул, в результате чего образуются высокомолекулярные пептиды и простетические группы.
Белки, не расщепившиеся в тонком отделе кишечника, подвергаются расщеплению в толстом кишечнике под воздействием пептидаз, которые синтезируются находящейся здесь микрофлорой. Ферменты микрофлоры толстого кишечника способны расщеплять многие аминокислоты пищи с образованием различных токсичных веществ: фенола, крезола, индола, сероводорода, меркаптанов и др. Такое превращение аминокислот в толстом кишечнике называется гниением белков. Токсические вещества всасываются в кровь и доставляются в печень, где подвергаются обезвреживанию. Весь процесс переваривания белков в желудочно-кишечном тракте занимает в среднем 8—12 ч после принятия пищи.
Выводы [ править | править код ]
Из всего вышесказанного, следует очевидный вывод: употреблять углеводы вместе с белком нежелательно.
В желудке есть особый сфинктер, называется привратник желудка, и у него очень любопытная функция: отделять пилорическую часть желудка от ампулы двенадцатиперстной кишки и выполнять функцию регулятора поступления кислого желудочного содержимого в двенадцатиперстную кишку по мере её готовности к приёму следующих порций химуса (пищевой кашицы).
Так уж сложилось, что кислая среда желудка не меняется, как и щелочная среда кишечного сока. Поэтому, делая винегрет, вы обрекаете себя на один из следующих исходов:
2) Когда бОльшую часть съеденной пищи составляют углеводы, и тщательно перемешав их с белком, протаскиваете всё это дело в кишечник раньше времени, что обернется в дальнейшем гниением белка в толстом кишечнике. Желудок не знает механизма, чтобы разделять эти тщательно перемешанные вещества и разместить по разным частям своей полости.
Подводя итог, делать следует следующим образом:
Разделив и употребив пищу в такой последовательности, вы убиваете трёх зайцев сразу:
Верить на слово учебнику физиологии, учебнику биохимии и уж тем более мне лично никого не призываю, просто попробуйте и составьте собственное мнение.
Критика [ править | править код ]
Если смотреть на систему раздельного питания в общем, откинув на какое-то время концепт разделения пищи, то многие рекомендации ничем не отличаются от тех, которые дают желающим похудеть. Натуральные минимально обработанные продукты, много овощей и фруктов, сокращение калорий, небольшие порции. Соблюдение только этих принципов уже способно привести к нужным результатам. Но в нашей статье мы как раз рассматриваем процесс в ключевом вопросе: разделять или нет.
Возьмем, к примеру, бобовые, которые считаются отличным источником не только углеводов, но и растительного белка. У многих людей они вызывают метеоризм. И тут напрашивается как бы сам по себе вывод о вреде сочетания белков и углеводов. Но этот продукт, как и многие другие, не создала бы природа съедобным и одновременно вредным для живого организма. Объяснение на самом деле лежит более глубоко. Переваривание бобовых осложнено несколькими причинами.
Во-первых, в их состав, как и в состав многих зерновых, входят фитиновые кислоты. Это грубые органические соединения, которые сами не перевариваются и сильно затрудняют переваривание и всасывание других продуктов. По сути это органическая кислота, которая связывает фосфор во внешней оболочке зерна. Не нейтрализованная фитиновая кислота может соединяться в кишечнике с кальцием, магнием, медью, железом и цинком, тем самым препятствуя их усвоению.
То же самое касается и реакции желудочно-кишечного тракта на глютен. Сейчас этим страдает все большее количество людей на нашей планете. Причина все та же. Но никак не связана с сочетанием белка и углеводов.
Конечно, не всем под силу проращивать и ферментировать. Но есть и другой выход. Всего около 8 часов замачивания в теплой, немного кислой среде может позволить нейтрализовать основную часть фитиновой кислоты в зернах. Также нейтрализуются ингибиторы ферментов, которые присутствуют во всех семенах, крахмалы преобразуются в солодовые сахара, дополнительно вырабатываются полезные ферменты.
Вся пища обязательно проходит через кислую среду желудка до достижения кишечника. По-другому просто быть не может. Но основное пищеварение происходит в тонком кишечнике. Это щелочная среда для нейтрализации кислоты желудка. Также она обеспечивает наилучшие условия для всех пищеварительных ферментов, в основном поступающих из поджелудочной железы. Они помогают в полной мере переварить всю пищу, содержащую белки, жиры и углеводы. Кислотность желудка и щелочность кишечника контролируются естественными процессами нашего организма и не зависят от типа диеты или сочетания продуктов.
В процессе эволюции пищеварительный тракт человека был подготовлен к смешанному питанию. К тому же, как говорилось ранее, в природе очень мало монопродуктов. Вся история кулинарии свидетельствует о том, что человек приспособлен питаться разнообразной пищей. Например, при раздельном питании не рекомендуется совмещать молоко с зерновыми. Но испокон веков люди ели хлеб с молоком. Такая пища позволяла насытиться и поддерживала здоровье. А биохимия нам сообщает, что аминокислоты из растительных и животных белков усваиваются в определенном соотношении. Если какой-то аминокислоты не хватает, то и остальные усваиваются хуже. Например, незаменимой аминокислоты лизина в зерновых мало, и усваивается она недостаточно. Зато она есть в молоке. И если соединить вместе эти две группы продуктов, получится полноценный белковый продукт.
Также доказано, что сочетание белка с клетчаткой, которой богаты углеводные продукты, дает отличное чувство насыщения, улучшает пищеварение, устраняет проблемы со стулом, а также клетчатка может связывать жиры.
Также одна из основных причин, почему люди выжили как вид, заключается в том, что они были в состоянии съесть, переварить и поглотить питательные вещества из любой съедобной пищи, которую смогли добыть. Наши предки глотали все, что было в наличии, не задумываясь о раздельном питании. Но стоит помнить, что это были натуральные продукты. Никакого сахара. Еще одним отличным примером способности человека переваривать белок и углеводы одновременно является грудное молоко, которым он питается в начале жизни. Это идеальное сочетание белков, углеводов и жиров. Некоторые исследования показали, что при одинаковой калорийности и БЖУ обычная сбалансированная диета и раздельное питание показывают практически аналогичную потерю веса. Общая потеря веса жира была выше в сбалансированной диете, хотя различия не достигли статистической значимости.
Минусы раздельного питания [ править | править код ]
По сравнению с низкокалорийными и другими «зверскими» садомазохистскими диетами, раздельное питание, конечно, нельзя считать вредным или опасным. Но по мнению ученых и диетологов, некоторые подводные камни тут все-таки есть. Во-первых, диета не включает в себя прямые рекомендации по размерам порций, что является важным аспектом поддержания здорового веса. Если соблюдение общих принципов может помочь сбросить вес тучному человеку, то без контроля порций и общей калорийности дневного рациона невозможно будет преодолеть плато, которое рано или поздно испытает организм.
Конечно, все эти утверждения, как и сама система раздельного питания, не имеют под собой стойких подтверждений в виде серьезных и длительных научных исследований. Больше идет упор на знания о физиологии и биохимии.
Раздельное питание и тренировки [ править | править код ]
Иногда спортсмены прибегают к принципам раздельного питания. Но в некоторых случаях оно способно привести к невысоким результатам в работе над собой.
Во-первых, разделяя пищу, мы не всегда можем получить необходимое количество макронутриентов (белков, жиров и углеводов), а также калорий в течение дня (если, к примеру, речь идет о наборе массы).
Во-вторых, увеличение синтеза белка возможно только при его сочетании с глюкозой (быстрыми углеводами). И хоть для самого процесса необходимо небольшое количество глюкозы в крови. То если следовать принципам раздельного питания и есть мясо через 4 часа после приема углеводов, сложно предположить, насколько эффективным это будет, если будет вообще. Я уже не говорю о том, что организм будет тяжелее восстанавливаться.
В-третьих, благодаря комбинации продуктов, как уже упоминалось выше, улучшается аминокислотный состав пищи и ее общая ценность для нашего организма.
Преимущества раздельного питания [ править | править код ]
Но давайте отойдем от критики и возьмем на заметку позитивные моменты в концепции раздельного питания. Это минимальная обработка продуктов, изобилие овощей и фруктов, натуральная пища, а также дробное питание.
В чем заключается успех раздельного питания:
нет проблем с контролем аппетита и поеданием огромных порций;
И в конце концов такой подход учит людей задумываться о том, что и как они потребляют в пищу.
Заключительное мнение о раздельном питании остается за вами. Я всегда советую трезво анализировать и логически рассуждать, а также применять на практике и смотреть, что работает лучше всего именно для вашего организма. Не забывайте учитывать свои цели и помнить, что наше здоровье и самочувствие превыше всего.
Урок Бесплатно Энергетический обмен
Ведение
Метаболизм состоит из двух взаимно противоположных, но взаимосвязанных процессов пластического и энергетического обмена.
Энергетический обмен необходим организму для образования энергии, которая, в свою очередь, будет израсходована на важные биологические процессы, происходящие в клетках, тканях, органах, в том числе и на пластический обмен.
Все наши движения, мыслительные и физиологические процессы (пищеварение, кровообращение, выделение), любое проявление жизнедеятельности требуют затрат энергии.
Энергетический обмен также называют катаболизм или диссимиляцией. Это достаточно длительный процесс, который происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые организм уже не сможет использовать.
Этот процесс аналогичен горению, при котором выделяется вода, углекислый газ и огромное количество энергии.
Катаболизм- это прежде всего многоступенчатый процесс, он не нуждается в высоких температурах, а выделившаяся энергия по большей части не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд в виде молекул АТФ.
Все это делает этот процесс невероятно эффективным и уникальным!
Первый этап энергетического обмена (подготовительный)
Энергетический обмен— это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.
Каким же образом энергия реакции расщепления используется клеткой?
Ученые обнаружили, что любая деятельность клетки всегда точно совпадает во времени с распадом молекул АТФ.
К примеру, при синтезе белков, углеводов, жиров в клетке идет активный распад АТФ.
В результате опытов было обнаружено, что любая работа мышц сопровождается активным расщеплением АТФ в их клетках.
Ученые сделали вывод, что именно АТФ является непосредственным источником энергии, необходимой для сокращения мышц и для синтеза сложных соединений.
Известно, что в среднем содержание АТФ в клетках составляет от 0,05% до 0,5% ее массы, то есть запас молекул АТФ в организме ограничен, и после распада АТФ должно произойти его восстановление.
Многоуровневый процесс энергетического обмена- это последовательные реакции восстановления молекул АТФ, которые происходят при участии ферментов.
Это можно сравнить с аккумулятором для телефона- когда его заряд садится, то устройство необходимо вновь зарядить.
Если в клетке постоянно измерять содержание АТФ, то его количество существенно не изменяется, но количество углеводов, белков, жиров будет уменьшаться. Это объясняется тем, что реакции расщепления углеводов, белков, жиров и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ.
В каждой клетке нашего организма в течение суток АТФ примерно 10 тысяч раз распадается и вновь заново образуется.
Таким образом, АТФ- это единый и универсальный источник энергии для функциональной деятельности клетки.
Следует отметить, что возможна передача энергии из одних частей клетки в другие.
Синтез АТФ может происходить в одном месте и в одно время, а использоваться может в другом месте и в другое время.
Синтез АТФ в основном происходит в митохондриях, образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.
Это одно из проявлений высочайшей организованности и упорядоченности всех химических реакций, протекающих в клетке.
Растения могут преобразовывать энергию солнечных лучей в АТФ на первом этапе фотосинтеза; хемосинтезирующие бактерии способны запасать энергию в форме АТФ, получаемую при реакциях окисления различных неорганических соединений.
Следует отметить, что фотосинтезирующие и хемосинтезирующие организмы также способны получать энергию благодаря окислению органических веществ, синтезированных в собственных клетках из неорганических соединений.
У гетеротрофов (животных, грибов) образование АТФ идет в клетках при помощи реакций окисления органических веществ, поступающих вместе с пищей.
В клетках растений:
Крахмал →глюкоза → АТФ
В клетках животных:
гликоген → глюкоза → АТФ
Энергетический обмен делится на три последовательных этапа:
Подготовительный этап
Вся пища, которая поступает в наш организм, подвергается ферментативному расщеплению, при котором:
На этом этапе вся выделившаяся при расщеплении веществ энергия рассеивается в виде тепла.
У одноклеточных животных подготовительный этап протекает в клетках, где и происходит расщепление сложных органических веществ на простые вещества под действием ферментов лизосом.
У многоклеточных организмов расщепление веществ начинает происходить в пищеварительном канале, а далее в клетках под действием лизосом.
У меня есть дополнительная информация к этой части урока!
В ротовой полости человека фермент α-амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида).
Фермент мальтаза, которая входит в состав слюны, действует на мальтозу и расщепляет ее до глюкозы.
Если долго пережевывать крахмалистую пищу, то можно почувствовать сладковатый привкус, это означает, что небольшая часть крахмала расщепилась до глюкозы (сладкий вкус возникает при пережевывании хлеба).
В желудке идет начальная стадия расщепления белков, гидролиз, под влиянием фермента пепсина.
В желудке небольшая часть жиров гидролизуется под действием липазы, а их переваривание происходит в тонком кишечнике.
Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).
Вывод: на первом этапе энергетического обмена происходит распад сложных органических веществ на простые с выделением энергии, которая вся рассеивается в виде тепла.
Пройти тест и получить оценку можно после входа или регистрации
Второй этап энергетического обмена (гликолиз)
Ключевое место в метаболизме всех типов клеток занимают реакции с участием сахаров, например, глюкозы, потому что процесс расщепления глюкозы идет наиболее быстро и легче, ведь организму необходимо достаточно быстро восстанавливать энергетические затраты.
Аминокислоты и белки использовать для образования энергии слишком не выгодно, так как большая их часть является структурными компонентами клеток. В этом случае организм разрушал бы сам себя.
Жиры могут использоваться для получения энергии, но главным образом после того, как израсходовались запасы углеводов, ведь жиры из-за своей гидрофобности очень медленно окисляются и малоподвижны в клетках. При этом из жиров в отсутствие кислорода АТФ получить нельзя, а из глюкозы можно.
Поэтому организм выбирает наиболее выгодный путь получения энергии в виде молекул АТФ за счет расщепления, в первую очередь, глюкозы.
Второй этап энергетического обмена называют бескислородным, так как процесс расщепления глюкозы и образования молекул АТФ идет без участия кислорода.
Гликолиз идет в цитоплазме клеток без участия кислорода. Он состоит из последовательных реакций, каждая из которых катализируется общим ферментом.
В ходе реакций гликолиза молекула глюкозы С6Н12О6 распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК)— С3Н4О3, при этом суммарно образуются две молекулы АТФ и вода.
Акцептором (лат. accipio- «я принимаю, получаю») водорода в реакции гликолиза служит кофермент НАД+.
НАД+ переносит электроны из одной реакции в другую.
НАД+ является окислителем и забирает электрон от другой молекулы и один водород, восстанавливаясь в НАД H, который далее служит восстановителем и уже отдаёт электроны.
Уравнение реакции гликолиза:
У меня есть дополнительная информация к этой части урока!
Клетка кроме аккумулятора АТФ использует и другие вещества, например, аккумуляторы водорода.
Существуют приемщики (акцепторы) водорода- ферменты, которые могут брать у одних веществ водород и переносить его к другим веществам.
Таких переносчиков три типа:
Еще существует переносчик остатков карбоновых кислот, который называется КоА (КоэнзимА).
НАДФ (никотинамидадениндинуклеотидфосфат)- отличается от НАД содержанием ещё одного остатка фосфорной кислоты.
НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.
В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях.
ФАД+ присоединяет к себе сразу два атома водорода и превращается ФАД Н2.
Все эти вещества активно участвуют в процессах образования молекул АТФ
Дальнейшая судьба ПВК может быть различной и зависит от того, какой тип извлечения энергии предпочитают организмы: анаэробный (бескислородный) или аэробный (кислородный).
Например, паразитические черви, живущие в кишечнике организмов хозяев, выбирают бескислородный путь преобразования ПВК, так как они мало подвижны и их клеткам хватает энергии, которая образуется при гликолизе глюкозы.
Эти виды паразитов выбирают именно такой путь преобразования энергии еще и потому, что при распаде глюкозы образуются ядовитые вещества (ацетон, уксусная кислота и этиловый спирт), которые действуют угнетающе на организм хозяина и ослабляют его иммунитет, что, в свою очередь, помогает паразиту существовать в агрессивной для него среде.
У меня есть дополнительная информация к этой части урока!
Есть такое заболевание (гиполактазия), при котором человек не может усваивать лактозу, которая является основным сахаром, содержащимся в молоке и молочных продуктах.
Если человек употребил пищу с содержанием лактозы, то это может привести к тому, что кишечная палочка (бактерия нашего кишечника) всю поступившую лактозу начинает перерабатывать сама, в результате чего активно размножается и выделяет много ядовитых веществ, которые образовались в ходе гликолиза (распада сахара).
Организм пытается вывести из себя все эти вредные вещества, усиливается работа кишечника, происходит резь и вздутие живота из-за ядовитых веществ и активного размножения бактерий.
Но в целом кишечная палочка помогает человеку расщепить те вещества, которые не способен расщепить он сам (к примеру, клетчатку) и получить витамины группы В
Образовавшаяся в результате гликолиза пировиноградная кислота подвергается дальнейшему преобразованию уже на внутренней мембране митохондрий, то есть переходит на третий этап энергетического обмена.
Вывод: на втором этапе энергетического обмена, гликолизе, из 1 молекулы глюкозы образуется 2 молекулы ПВК и 2 молекулы АТФ.
Если в клетку прекратилась подача кислорода, то ПВК подвергается брожению, к примеру, в клетках растений, которые были затоплены во время весенних паводков.
В зависимости от того, какие конечные продукты образуются, выделяют несколько видов брожения.
Рассмотрим основные виды:
1. Спиртовое брожение
Встречается в основном у дрожжей и растений.
Конечными продуктами являются этанол и углекислый газ.
При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание.
Подавление спиртового брожения кислородом называется эффектом Пастера.
Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.
При этом типе брожения сначала происходит образование уксусного альдегида, а затем этилового спирта:
2. Молочнокислое брожение
Осуществляется с помощью лактобактерий, бифидобактерий, стрептококков.
Из ПВК они образуют молочную кислоту, ацетон, янтарную и уксусную кислоту.
Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.
У меня есть дополнительная информация к этой части урока!
Пробиотики- класс микроорганизмов и веществ микробного и иного происхождения, использующихся в терапевтических целях, а также пищевые продукты и биологически активные добавки, содержащие живые микрокультуры.
Пробиотики обеспечивают при систематическом употреблении в пищу благоприятное воздействие на организм человека в результате нормализации состава и (или) повышения биологической активности нормальной микрофлоры кишечника
У животных и человека при недостатке кислорода также может происходить молочнокислое брожение с образованием молочной кислоты.
В мышцах есть запасы углеводов в виде гликогена. При долгой и усиленной работе, кровь не успевает снабдить мышцы достаточным количеством кислорода, в результате чего мышечные клетки вынуждены переходить на бескислородный способ получения АТФ.
При этом образуется молочная кислота, вызывающая боли в мышцах.
Квашение- разновидность молочнокислого брожения, в процессе которого образуется молочная кислота, оказывающая на продукты (наряду с добавляемой поваренной солью) консервирующее и размягчающее действие.
Квашение применяется при консервировании овощей и в кожевенном производстве.
У меня есть дополнительная информация к этой части урока!
Скелетные мышцы человека неоднородны. Мышца может состоять из нескольких типов волокон в разных пропорциях.
Красные волокна содержат много митохондрий и обладают высокой способностью к аэробному окислению глюкозы и жирных кислот. Они хорошо снабжаются кровью и приспособлены к продолжительной работе.
В белых мышечных волокнах мало митохондрий, но много запасов гликогена, в них с большой скоростью происходит анаэробный (бескислородный) распад гликогена с образованием молочной кислоты.
Мышцы с большой долей белых волокон быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них быстрее наступает утомление: запасы гликогена в мышечных клетках быстро истощаются, а поступление глюкозы из крови и ее использование происходят медленно.
3. Маслянокислое брожение
Масляная кислота, бутанол, ацетон, уксусная и ряд других органических кислот являются продуктами сбраживания углеводов бактериями- сахаролитическими анаэробами.
Благодаря определению наличия тех или иных кислот в клетке можно установить, какие бактерии образовали эти кислоты.
Знание механизмов брожения имеет большое практическое значение не только для живых организмов, но и для человека:
Недостатком процессов брожения является извлечение незначительной доли той энергии, которая заключена в связях органических молекул.
Для бактерий, паразитических видов, живущих в бескислородной среде, энергии, образующейся в результате брожения или гликолиза, достаточно для существования, поэтому они, в отличие от человека, не нуждаются в кислороде.
Также брожение является жизненно важным процессом для хвойных растений. В зимний период устьица хвои закупориваются смолой и газообмен с окружающей средой практически прекращается, в этом случае для получения энергии в клетках активно идет процесс спиртового брожения.
Пройти тест и получить оценку можно после входа или регистрации

















